
1 Introduction

Written by Steve Byrnes, 2012. Please email me any feedback. My website is http://

sjbyrnes.com . Last update/upload: 14 December 2012.

This is a group of programs written in Python / NumPy for simulating light propagation
in planar multilayer thin films, including the effects of multiple internal reflections and
interference, using the “Transfer Matrix Method”. It can also simulate combinations of thin
and thick films (e.g. a thick piece of glass with a multi-layer antireflection coating on one
side and a mirror on the other side), or purely thick films.

In addition to calculating how much light is transmitted and reflected, the program can
calculate, at any given point in the structure, how much light is being absorbed there. This
is a very important feature for solar-cell modeling, for example.

It can also calculate the parameters measured in ellipsometry.

There are four files: (1) tmm_core.py contains all the main programs, (2) color.py has
additional color-related functions, like calculating the RGB color of a thin film under re-
flected light, (3) examples.py contains a few example calculations to get you started, and
(4) tests.py contains a number of programs that perform various tests and consistency
checks to confirm that everything is coded and running correctly. There is also the stan-
dard __init__.py, the home of the main tmm namespace, into which are imported all the
tmm_core functions. [To run the color-theory related functions in color.py, you need to
download the package colorpy at https://pypi.python.org/pypi/colorpy/ . But even
without that, you can still run all the other code.]

I did not compile any API documentation (list of functions and parameters), except the
source code itself. You should read tmm_core.py: I tried hard to put complete information
into each function docstring about what the function does and how to use it. Also look at
examples.py to see examples of various kinds of calculations and plots.

2 Other people’s programs

There are many other free (and non-free) programs that do some or all of what this program
does. Here are the ones I know of:

• http://empy.sourceforge.net/

• http://www-swiss.ai.mit.edu/~jaffer/FreeSnell/

• http://optics.unige.ch/alexey/reffit.html

• http://www.ub.edu/optmat/programs.html

• http://www.luxpop.com/
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• http://thinfilm.hansteen.net/

• http://www.lightmachinery.com/optical-calculations.php

• http://pypi.python.org/pypi/openTMM

• http://www.stanford.edu/group/mcgehee/transfermatrix/

I have done a few consistency checks between my program and others. They tend to agree
perfectly except in the tricky (and somewhat unusual) case of calculating reflected power or
transmitted power when the semi-infinite incoming and/or outgoing medium has a complex
index of refraction. [However, I’m confident that my formulas are correct, see below.]

3 Installation

Requires SciPy and NumPy to run. The “examples” also use Matplotlib, while the color
calculation part requires ColorPy (https://pypi.python.org/pypi/colorpy). Tested in
Python 2.7 and 3.3. It is very likely compatible with other versions, but I haven’t checked.
Install via pip or just download it directly (it’s pure python).

3.1 Installation for dummies

If you’ve never used Python before, getting started can be a bit tricky. See http://

sjbyrnes.com/?page_id=67 for installation advice.

You can install this package by typing pip install tmm into a terminal / command line.
Or, since the package is pure python and requires no setup or compilation, you can just
download it directly. Put the tmm folder somewhere that Python can find it. (If you’re not
sure, type import sys; sys.path into IPython.)

To get going, try typing the following in IPython (pylab mode):

>> import tmm.examples

>> tmm.examples.sample1()

A plot should pop up.

4 Units

The program implicitly requires a unit of length. You can use any unit, but keep it consistent.
For example, if wavelength is given in nanometers, the thicknesses of the layers should also
be given in nanometers, and the absorption at a given point will be in (fraction of incoming
light power per nanometer of depth).
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5 Theoretical background

The rest of this document lists the equations that form the basis of the program and explains
where they come from. Where possible the equations are based on Bo Sernelius’s lecture
notes: http://people.ifm.liu.se/boser/elma/ (especially lecture 13).

6 Wave propagation

The planar film is assumed to be uniform in the x and y directions, so that surfaces are
normal to ẑ. We assume the wavevector is in the x-z plane. (Or just the z direction if it’s
normal-incidence). The “forward” direction (direction that normally-incident incoming light
is traveling) is +ẑ.

The electric field at any given point is a superposition of the forward-moving and backwards-
moving electromagnetic waves:

E(r) = E0
fe
ikf ·r + E0

be
ikb·r

(Implicitly, you always multiply by e−iωt and then take the real part.) Here, kf and kb is
the [angular] wavevectors for foward- and backwards-moving waves; E0

f and E0
b are some

constant vectors; and E(r) is the complex electric field at any given point r within a certain
layer. The y-components of the kf and kb are zero, by definition of the x-axis. The x-
components of kf and kb are always real, because we assume the light intensity is uniform
along the x and y directions. However, the z component might be complex, representing a
wave that is attenuating as it travels through the stack, due to absorption.

The wavevectors is related to the [complex] index of refraction n by:

kf =
2πn

λvac
(ẑ cos θ + x̂ sin θ)

kb =
2πn

λvac
(−ẑ cos θ + x̂ sin θ)

where θ is the angle from the normal, λvac is the vacuum wavelength. That means n sin θ is
always a real number, but n cos θ might not be. This is consistent with Snell’s law:

ni sin θi = nj sin θj

i.e., n sin θ should be the same real number in every layer. Snell’s law is the same as saying
that the component of k in the x− y plane is the same in any layer.
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7 What is complex refractive index?

When the refractive index is complex, the imaginary part is sometimes called “extinction
coefficient”. The larger it is, the more light the material absorbs. Negative extinction
coefficient corresponds to stimulated emission. Extinction coefficient, like refractive index, is
a unitless number It should NOT be confused with “molar extinction coefficient” or “mass
extinction coefficient” in chemistry, which are not unitless. [However, if you know one you can
figure out the other. See http://en.wikipedia.org/wiki/Mathematical_descriptions_

of_opacity .] For real-world materials, the extinction coefficient, like the refractive index,
is different at different frequencies.

Again, with the conventions used here, Imn > 0 means absorption and Imn < 0 means
stimulated emission.

8 Explicit E, H, and k for s-polarization and p-polarization

As usual, s-polarization is where the E-field points in the y-direction, and p-polarization
is where the H-field points in the y-direction. (There is no difference between s and p-
polarization for normal-incident light.

Maxwell’s equations imply that H = µ
ω
k×E for a plane wave. [This works even if k and/or

E is a complex vector.] Therefore the explicit E,H,k are:

s-polarization1

Ef = Ef ŷ, Eb = Ebŷ

kf =
2πn

λvac
(cos θẑ + sin θx̂) , kb =

2πn

λvac
(− cos θẑ + sin θx̂)

Hf ∝ nEf (− cos θx̂ + sin θẑ) , Hb ∝ nEb (cos θx̂ + sin θẑ)

Now with p-polarization,

p-polarization2

kf =
2πn

λvac
(cos θẑ + sin θx̂) , kb =

2πn

λvac
(− cos θẑ + sin θx̂)

Ef = Ef (− sin θẑ + cos θx̂), Eb = Eb(− sin θẑ− cos θx̂)

1I’m using Sernelius’s convention, where a forward- and backward-moving s-polarized wave have the
same amplitude sign if their E-fields point in the same direction. I am also assuming throughout that µ, the
magnetic permeability, is approximately equal in each layer.

2I’m using Sernelius’s convention, where a forward- and backward-moving p-polarized wave have the
same amplitude sign if their H-fields point in the same direction. I am also assuming throughout that µ,
the magnetic permeability, is approximately equal in each layer.
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Hf ∝ nEf ŷ, Hb ∝ nEbŷ

9 Single-interface reflection and transmission ampli-

tudes, sign convention

If you have the interface between two layers 1 and 2, and shine light from 1, then you have
the incident amplitude (Ef on the layer 1 side), the reflected amplitude (Eb on the layer 1
side), and the transmitted amplitude (Ef on the layer 2 side). The reflection coefficient r is
the ratio of reflected amplitude to incident amplitude, and the transmission coefficient t is
the ratio of transmitted amplitude to incident amplitude.

The sign of r depends on what it means for Eb and Ef to have the same sign versus op-
posite sign. I’m using Sernelius’s convention (see previous section and footnotes). In other
references, other conventions are used, and therefore r might have the opposite sign. Beware!

The equations for r and t (“The Fresnel Equations”) are as given in Sernelius: Traveling
from medium 1 into medium 2:

rs =
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

, rp =
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

ts =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
, tp =

2n1 cos θ1
n2 cos θ1 + n1 cos θ2

10 Amplitudes for multilayer thin films

Figure 1 – Sample stack with N = 4 (two finite layers between two semi-infinite layers).
The labels next to the small arrows indicate wave amplitudes.

Now we have N materials, numbered 0, 1, . . . , N−1, where the first (“0”) and last (“N−1”)
layer are semi-infinite. Light with amplitude 1 is entering towards layer 1 (Fig. 1).
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At the interface between the (n− 1)st and nth material, let vn be the amplitude of the wave
on the nth side heading forwards (away from the boundary), and let wn be the amplitude on
the nth side heading backwards (towards the boundary). (Fig. 1.) ((v0, w0) are undefined,
while vN−1 = t and wN−1 = 0.) Then(

vn
wn

)
= Mn

(
vn+1

wn+1

)
where3

Mn =

(
e−iδn 0

0 eiδn

)(
1 rn,n+1

rn,n+1 1

)
1

tn,n+1

for n = 1, . . . , N − 2. Now we want the matrix relating the waves entering the structure to
the waves exiting, i.e.: (

1
r

)
= M̃

(
t
0

)
.

M̃ is given by:

M̃ =
1

t0,1

(
1 r0,1
r0,1 1

)
M1M2 · · ·MN−1

Combining these two equations allows r and t to be written in terms of the four entries of
the matrix M̃ : (

1
r

)
=

(
M̃00 M̃01

M̃10 M̃11

)(
t
0

)
t = 1/M̃00, r = M̃10/M̃00

Incidentally, at this point, it is straightforward to calculate vn and wn for every n.

11 Calculating Poynting vector

The next few sections relate to power flows and power absorption: The goal is to be able
to generate graphs like Fig. 2. The relevant equations are somewhat hard to find (without
typos) in the literature, but I verified them by various consistency checks, such as continuity
across interfaces when appropriate, agreement with R and T in simple cases, etc.

I will start by deriving the expression for the normal component of the Poynting vector S,
i.e. S · ẑ. This dot-product is called “poyn” in the program. It represents the net power
flowing forward through the structure at a given point. It is unitless, because it is expressed
as a fraction of the total incoming power. Start with s-polarization, using the expressions
from a previous section:

3My M ’s are a bit different than Sernelius’s, because I’m using v and w, the wave amplitudes just after
an interface, while Sernelius is using x and y, the wave amplitudes just before an interface.
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Figure 2 – Sample calculation of local absorption and Poynting vector in a two-layer struc-
ture with air on both sides (refractive indices written below the graph).

E = Ef ŷ + Ebŷ

H ∝ nEf (− cos θx̂ + sin θẑ) + nEb (cos θx̂ + sin θẑ)

S · ẑ =
1

2
Re[ẑ · (E∗ ×H)] ∝ Re[(E∗f + E∗b )(Ef − Eb)n cos θ]

After normalizing to incident power:

s-polarization: S · ẑ =
Re
[
(n)(cos θ)(E∗f + E∗b )(Ef − Eb)

]
Re [n0 cos θ0]

Next, p-polarization:

E = Ef (− sin θẑ + cos θx̂) + Eb(− sin θẑ− cos θx̂)

H ∝ nEf ŷ + nEbŷ

S · ẑ =
1

2
Re[ẑ · (E∗ ×H)] ∝ Re[(cos θ)∗(E∗f − E∗b )(Ef + Eb)n]

After normalizing to incident power:

p-polarization: S · ẑ =
Re
[
(n)(cos θ∗)(Ef + Eb)(E

∗
f − E∗b )

]
Re [n0 cos θ∗0]

12 T (transmitted intensity)

To get the formula for T , the fraction of power transmitted, we just apply the Poynting
vector formula above to the special case of the final medium, where Eb = 0 (no light is
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flowing back towards the material from the other side):

s-polarization: T = |t|2 Re [n cos θ]

Re [n0 cos θ0]

p-polarization: T = |t|2 Re [n cos θ∗]

Re [n0 cos θ∗0]

where T is the fraction of power transmitted and t = Ef/E0 is the transmission amplitude.4

13 R (reflected intensity) and “power entering”

The formula for R is just what you expect:

R = |r|2

An interesting thing—which had me confused at first—is that the power entering the first
layer of the stack (called power_entering in the program) is not necessarily equal to 1−R, as
one would expect (energy 1 moving forwards, minus energy R moving backwards). Likewise,
it is possible to have R + T 6= 1 for an interface between two semi-infinite media. This
strange situation only comes up when the starting semi-infinite medium is absorbing. Why
does this happen? To find out, read Appendix A!

Quick summary of Appendix A: For an interface between two semi-infinite media, power_entering
is always equal to T . When the incident semi-infinite medium has real refractive index,
power_entering is always equal to 1 − R. The difference between power_entering and
1 − R is related to an excess or deficit of absorption just before the interface, arising from
interference between the incoming and reflected waves. R is defined not by the power that
doesn’t enter the medium, but by the power that does enter the reflected wave. See Ap-
pendix A.

14 Absorbed energy density

Next, absorbed energy density at a given depth. In principle this has units of [power]/[volume],
but we can express it as a multiple of incoming light power density on the material, which has
units[power]/[area], so that absorbed energy density has units of 1/[length]. This is the nega-
tive derivative (with respect to distance) of the “Poynting” expressions above. Differentiating

4In some references, the complex conjugation for p-polarization is omitted, but I’m very confident it’s
correct. Usually the incident and final media are non-absorbing, e.g. air, so cos θ is real and it doesn’t matter
whether you conjugate θ or not.
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is straightforward, using Ef (z) ∝ eikzz and Eb(z) ∝ e−ikzz. (Here, kz = 2πn cos θ/λvac.) The
result is:

s-polarization: a(z) =
|Ef + Eb|2 Im [n cos(θ)kz]

Re [n0 cos θ0]

p-polarization: a(z) =
Im [n cos(θ∗) (kz|Ef − Eb|2 − k∗z |Ef + Eb|2)]

Re [n0 cos θ∗0]

Within a given layer, absorption is an analytical function:

a(z) = A1e
2z Im(kz) + A2e

−2z Im(kz) + A3e
2izRe(kz) + A∗3e

−2izRe(kz)

where:

s-polarization : A1 =
Im [n cos(θ)kz]

Re [n0 cos θ0]
|w|2

A2 =
Im [n cos(θ)kz]

Re [n0 cos θ0]
|v|2

A3 =
Im [n cos(θ)kz]

Re [n0 cos θ0]
vw∗

p-polarization : A1 =
2 Im [kz] Re [n cos(θ∗)]

Re [n0 cos θ∗0]
|w|2

A2 =
2 Im [kz] Re [n cos(θ∗)]

Re [n0 cos θ∗0]
|v|2

A3 =
2 Re [kz] Im [n cos(θ∗)]

Re [n0 cos θ∗0]
vw∗

where v = Ef (0) and w = Eb(0). (For the purpose of this section, z = 0 is the start of the
layer in question. n0 and θ0 refer as usual to the incident semi-infinite medium; remember,
we are calculating absorption per unit incident power.)

(If I omitted parentheses somewhere, it’s because cos(θ∗) = (cos θ)∗.)

15 Branch cuts

Snell’s law gives θi = arcsin(n0 sin(θ0)/ni). However, the arcsin function is ambiguous–it has
branch cuts in the complex plane. How do we get the right θ??

There are actually only two non-equivalent choices. If θ is one solution, then π − θ is the
other. You may recognize that we are choosing which of the two waves in medium i is called
“forward-traveling” and which one is called “backward-traveling”. How do we make the right
choice??
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Good news: In the intermediate, finite-thickness layers, the choice actually doesn’t matter.
We solve for both the forward- and backward-traveling waves, so it doesn’t matter which wave
has which name. The two choices of θi will switch vi with wi, but won’t affect observable
quantities like reflectance, absorption, etc.

Bad news: The choice of θ versus π − θ does matter very much in the starting semi-infinite
layer (where the “forward-traveling” wave amplitude is set to 1), and in the final semi-infinite
layer (where the “backwards-traveling” wave amplitude is set to 0). In these layers, we need
to choose θ correctly.

I’ve only checked the case I care about, Ren > 0 and Imn ≥ 0. In that case, the naive
calculation (using the default behavior of arcsine) gives the correct answer for all cases, in
both Python5 and Mathematica. I think I checked this pretty carefully, see the appendix
(Section B) for details.

In more specialized cases, like negative-index materials (Ren < 0) or stimulated-emission
media ((Imn)/(Ren) < 0), results are not guaranteed! Please check this before using, if
your starting or ending layer is one of these!

[Stimulated-emission (a.k.a. gain) media have another problem too, even in the intermediate
layers. This program will always find the finite steady-state solution to Maxwell’s equations.
But if the system is unstable, the finite steady-state solution will not actually occur. Instead,
the fields will get stronger and stronger, i.e. the system is a laser.]

16 Thick “incoherent” films: Introduction

That finishes the thin-film part of the program. Next, thick films. Here we are interested in
hybrid structures containing both thick and thin layers (or even just thick layers). Light loses
its coherence when traveling through the thick layers–i.e., the Fabry-Perot fringes are so close
together that they cannot be resolved by the experimental measurement, due to factors such
as random thickness variations, propagation angle variations, and/or wavelength variations.
Instead of seeing the fringes, you just see the average.

In this program, there are two types of layers: Coherent layers (treated as in the sections
above), and incoherent layers. Generally, a layer should be treated as coherent if its thickness
is comparable to the light wavelength or smaller, and incoherent if it’s much larger than the
light wavelength.

As soon as light enters an incoherent layer, its phase information is thrown out, and only its
intensity is remembered. The program has no partial coherence, it’s all or nothing!

5Note: For python, you need to use the arcsine function in SciPy, not the one in NumPy, so that when
you calculate the arcsine of a real number greater than 1, e.g. total internal reflection, you get a complex
angle instead of nan. Or, you can use NumPy arcsine if you cast its argument to complex.
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For more on this topic see these references: Harbecke6 and Katsidis7. These papers, which
I have not read in detail, seem to offer more powerful and general methods than the basic
approach I’m using.

17 Thick “incoherent” films: Calculation method

Figure 3 – Variable definitions related to the incoherent calculation program. A “stack”
is one or more consecutive coherent layers. Note the three numbering systems: Each layer
has a layer index, each incoherent layer has an incoherent layer index, and each stack has
a stack index. Vi,Wi are power flows (note the capital letters, not to be confused with the
amplitudes vi, wi in Fig. 1).

We have a number of incoherent layers 0,1,...,N − 1. Let Vi be the forward propagation
intensity and Wi be the backwards intensity at the beginning of the ith incoherent layer.
(Capital letters to distinguish from v, w, the amplitudes in the coherent program, see previous
section.) Let Xi and Yi be forward and backwards at the end of the ith incoherent layer.
(Xi and Yi are not explicitly calculated in the program.) Let Ti,j be transmissivity from the
ith to jth incoherent layer (where j = i± 1, and Ri,j the reflectivity. Then:

Yi = XiRi,i+1 +Wi+1Ti+1,i

Vi+1 = XiTi,i+1 +Wi+1Ri+1,i(
Xi

Yi

)
=

1

Ti,i+1

(
1 −Ri+1,i

Ri,i+1 Ti+1,iTi −Ri+1,iRi,i+1

)(
Vi+1

Wi+1

)
.

Let Pi be the fraction of light that passes successfully through layer i (in a single pass)
without getting absorbed, calculated by

Pi = e−αdi , α =
4π Im[ni cos θi]

λvac
6http://dx.doi.org/10.1007/BF00697414
7http://dx.doi.org/10.1364/AO.41.003978
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where di is the layer thickness. Then:(
Vi
Wi

)
=

(
1/Pi 0

0 Pi

)(
Xi

Yi

)
Define the matrices Ln by

Ln =
1

Ti,i+1

(
1/Pi 0

0 Pi

)(
1 −Ri+1,i

Ri,i+1 Ti+1,iTi,i+1 −Ri+1,iRi,i+1

)
for n = 1, . . . , N − 1. Now we want the matrix relating the intensities entering the structure
to the intensities exiting, i.e.: (

1
R

)
= L̃

(
T
0

)
.

Then the formula for L̃ is

L̃ =
1

T0,1

(
1 −R1,0

R0,1 T1,0T0,1 −R1,0R0,1

)
L1L2 · · ·LN−1 =

(
L̃00 L̃01

L̃10 L̃11

)
T = 1/L̃00, R = L̃10/L̃00

18 Thick “incoherent” films: Absorption profile, Co-

herence length

Absorption as a function of depth is not implemented in the program for incoherent layers
(at least for now); this section explains why.

Calculating the absorption profile within an “incoherent” layer is not simple to do correctly.
If you look up close, the absorption as a function of position would be oscillatory near an
interface due to interference between the incoming and outgoing beams; with the oscillations
gradually dying down into a smooth exponential farther away from the interface. The “co-
herence length” describes how far from the interface you need to go before the oscillations
die down. For example, if the incoherence is caused by using a not-quite-monochromatic
light source, the coherence length would be related to the bandwidth of the light.

If you are only interested in calculating the total amount of light absorbed in each layer, it
turns out that you do not need to know the coherence length!! More precisely, the coherence
length does not effect the total absorption in (and transmission through) an incoherent layer
under two assumptions (which are usually satisfied): (1) The coherence length is large com-
pared to a wavelength; (2) The coherence length is small compared to the layer thickness.8

8The mathematics of this is that when you have sinusoidal oscillations that die away, their integral is
independent of the precise decay properties. Mathematically,

∫∞
0
eikxe−αxdx = 1

−ik+α ≈
1
−ik ; the integral

is approximately independent of α as long as α� k, i.e. as long as the decay length is much larger than the
oscillation length.
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That’s the reason that you are not prompted to input coherence lengths in any of the
calculations above.

On the other hand, if you want to calculate absorption as a function of depth in an incoherent
layer, you do need to know exactly what the coherence length is.

I’m not sure what to do here. Asking users to input the coherence length seems a bad
strategy as most people probably wouldn’t know what it is. Assuming a coherence length of
0 would give grossly inaccurate results very close to the interfaces, which would be OK in
some applications but not others.

Since I cannot think of a good way to do it, absorption as a function of depth is not imple-
mented for incoherent layers. Sorry! If you want to see absorption as a function of depth
for an incoherent layer, maybe you can use the coherent program and average over slightly
varying thicknesses or wavelengths (as appropriate) to get rid of spurious oscillations.
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A Appendix: R (reflected intensity) and “power entering”

We obviously expect R = |r|2 here (as usual), and that’s correct.

The interesting thing—which had me confused at first—is that the normalized Poynting
vector passing through the first interface is not necessarily equal to (1 − R), as one would
expect (energy 1 moving forwards minus energy R moving backwards). Likewise, it is possible
to have R + T 6= 1 for an interface between two semi-infinite media. This strange situation
only comes up when the starting semi-infinite medium is absorbing. Why does this happen?

To get the exact formulas for Poynting vector at the initial interface, called power_entering

in the program, we just plug into the normal Poynting vector formula with Ef = 1 and
Eb = r, to get:

s-polarization:

power entering =
Re [n0 cos θ0(1 + r∗)(1− r)]

Re [n0 cos θ0]
= (1−R) + 2 Im[r]

Im[n0 cos θ0]

Re[n0 cos θ0]

p-polarization:

power entering =
Re [n0 cos θ∗0(1 + r)(1− r∗)]

Re [n0 cos θ∗0]
= (1−R)− 2 Im[r]

Im[n0 cos θ∗0]

Re[n0 cos θ∗0]

The first term is what we expect, the second term is strange.

To explain this funny result, start with how R is defined (in the case of an absorbing semi-
infinite medium). The most useful and sensible definition—and the one I’m using—is the
one shown in Fig. 4: You should be able to say the amount of power going into the reflected
beam, at a distance |z| from the interface, after the beams have spatially separated, by just
calculating Re−α|z| where α is the absorption coefficient. (In fact, that exact calculation is a
key ingredient in the incoherent calculation.)

More generally, we naively expect the Poynting vector for z < 0 in Fig. 4 to satisfy

S(z) · ẑ = eα|z| −Re−α|z| [formula for without wave interference] (1)

where the first term comes from the incoming wave and the second term from the reflected
wave. It is fine to demand this when the beams do not overlap, but we CANNOT use this
expression in the “Interference here” triangle region of Fig. 4. Instead, there is interference
between the forward- and backward-moving waves, which causes oscillations in the absorption
profile (“hot-spots” and “nodes”) (see Fig. 2), so there are corresponding oscillations in the
Poynting vector (it’s a bit hard to see them in Fig. 2 but they’re there). A bit of extra
energy is flowing from the nodes to the nearby hot-spots. Thanks to these oscillations, the
Poynting vector right at the edge before the start of the structure may not be 1−R.
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Figure 4 – How the reflected intensity R is defined. Electric field E and power transported
P are shown.

If r is real, then there is a node or hot-spot of absorption right at the interface. It turns
out that this sort of corresponds to having an integer number of oscillatory cycles, so the
oscillations do not effect the power passing through the interface. R+T = 1 is still valid. But
if r is complex, then you have an extra bit of absorption, or deficit of absorption, compared
to the non-oscillating baseline expectation of Eq. (1).

Instead of R + T = 1, the formula is:

R + T ± (extra bit or deficit of absorption from how the oscillations cut off) = 1

Again, this comes from the fact that R is defined by Eq. (1), which is not valid when there
is interference.

To verify that R = |r|2 is the correct expression to use, we use the Poynting vector for-
mula, plugged in at an arbitrary depth z < 0, using Ef = exp(2πinz cos θ/λvac) and
Eb = r exp(−2πinz cos θ/λvac). I’ll just do the s-polarized case:

S(z) · ẑ =
Re[n0 cos θ0(E

∗
f + E∗b )(Ef − Eb)]

Re[n0 cos θ0]

=
(
e−4πz Im[n0 cos θ0]/λvac − |r|2e+4πz Im[n0 cos θ0]/λvac)

)
+

+

(
2

Im[n0 cos θ0]

Re[n0 cos θ0]
Im[re4πizRe[n0 cos θ0]/λvac ]

)

The first term corresponds exactly to Eq. (1) with R = |r|2, and the second term is a
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sinusiodal oscillation corresponding to interference. When the beams stop overlapping (i.e.,
below the triangle in Fig. 4), the oscillation term goes away but the other term remains.

In the program, I use the variable “power_entering” to describe the net power entering the
structure, i.e. the Poynting vector at the front of the first layer. For an interface between two
semi-infinite media with light coming from just one side, power_entering is always equal
to T . When the incident semi-infinite medium has real refractive index, power_entering is
always equal to 1−R.

A.1 Accounting for this effect in the incoherent calculation

One of the things I want to compute in the incoherent calculation is how much light gets
absorbed in each layer. Part of that absorption is the “extra” absorption due to the oscillation
cut-off at the interface.

At the interface between two incoherent layers, say 0 and 1, let’s say the power flows on
the two sides are Pf,0, Pf,1, Pb,0, Pb,1, where f and b stand forward-moving and backward-
moving. The important thing to remember is that the net power actually crossing the
interface is exactly Pf,0T01 − Pb,1T10. Why? Because the transmitted light beams have no
funny corrections due to oscillations; they have nothing to coherently interfere with them.

Therefore, the “extra” absorption near the interface, not accounted for in the exponential
decay of the waves, is exactly equal to

(Pf0 − Pb0)− (Pf0T01 − Pb1T10) = Pf0(1−R01 − T01)

extra near-interface absorption on the 0 side, and likewise

Pb1(1−R10 − T10)

extra near-interface absorption on the 1 side.

B Appendix: Branch cuts

Snell’s law gives θi = arcsin(n0 sin(θ0)/ni). However, the arcsin function is ambiguous–it has
branch cuts. How to get the right θ?? Remember here, ni may be an arbitrary complex
number, ideally the program will work even for unusual cases like negative-index materials
(Ren < 0) or stimulated-emission media (Imn < 0).

Actually, we never care about θ itself, just sin θ and cos θ. The sine has no ambiguity:

sin θi =
n0 sin θ0
ni
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The cosine is more problematic, because there are two choices consistent with Snell’s law:

cos θi = ± 1

ni

√
n2
i − (n0 sin θ0)2

Do we want the + or −?? In other words, we can pick between two angles θ and π − θ.

See Section 15 for an explanation of what the choice really means, and more importantly,
why it only matters in the starting and ending semi-infinite layers, but doesn’t matter in the
intermediate, finite-thickness layers.

B.1 Case that Imn > 0, Ren > 0

For an absorbing material (Imn > 0), a clear requirement is that Im(n cos θ) > 0. That
way, Im kz > 0, so the Ef wave in the medium decays rather than amplifying. Another
clear requirement is that R > 1 or T < 0 cannot occur. This translates to Re[n cos θ] ≥ 0
for s-polarization and Re[n cos θ∗] ≥ 0 for p-polarization. This amounts to the same thing
as saying that the Poynting vector associated with an Ef wave should point forward not
backwards.

Important question: Are these two “clear requirements” consistent with each other. Yes!

Theorem: If we choose the θ with Im(n cos θ) > 0, then it will also be true that Re[n cos θ] >
0.

Proof: As above,

ni cos θi = ±
√
n2
i − (n0 sin θ0)2

Given that Imni > 0 and Reni > 0, it follows that Imn2
i > 0. Since n0 sin θ0 is real (the

wave intensity is assumed to be uniform in the lateral direction), (n2
i − (n0 sin θ0)

2) also has
a positive imaginary part. Therefore, its square root is in the first or third quadrant of the
complex plane. That finishes the proof.

Theorem: If we choose the θ with Im(n cos θ) > 0, then it will also be true that Re[n cos θ∗] >
0.

Proof:

Re[ni cos θ∗i ] = Re[n∗i cos θi] = ±n
∗
i

ni

√
n2
i − (n0 sin θ0)2

Let φ with 0 < φ < π/2 be the complex phase of ni. We have

arg
n∗i
ni

= −2φ

Using the fact that (n0 sin θ0)
2 is a nonnegative real number,

arg n2
i = 2φ, 2φ ≤ arg(n2

i − (n0 sin θ0)
2) < π

17



If we choose the square-root with positive imaginary part,

φ ≤ arg
√
n2
i − (n0 sin θ0)2 < π/2

Therefore,

−π/2 < −φ ≤ arg

[
n∗i
ni

√
n2
i − (n0 sin θ0)2

]
< −2φ+ π/2 < π/2

That finishes the proof.

B.2 Implementation for Imn > 0, Ren > 0

If we use the naive
θi = arcsin(n0 sin θ0/ni)

do we get the θi which satisfies
Im(ni cos θi) > 0

in all cases? The answer is “Yes”, using the default arcsine branch-cut behavior of Python
and Mathematica (which are the same). At least, I randomly generated a few million exam-
ples and it always worked in both Python and Mathematica, even when n0 sin θ0 < 0.

B.3 Case that Imn = 0, Ren > 0

As before,

cos θi = ± 1

ni

√
n2
i − (n0 sin θ0)2

There are three cases: Total internal reflection where n0 sin θ0 > ni and cos θi is pure imag-
inary; the ordinary case where n0 sin θ0 < ni and cos θi is pure real, and the boundary case
where n0 sin θ0 = ni and cos θi = 0. The third one has no ambiguity because cos θi = − cos θi.
Let’s look at the other two cases.

B.3.1 Case Imn = 0, Ren > 0, Total internal reflection

Here, Re[ni cos θi] = 0 and Re[n∗i cos θ∗i ] = 0, so no need to worry about the sign of the
Poynting vector or R > 1 or T < 0. The only requirement is that the wave decay rather
than amplify, i.e.

Im(ni cos θi) > 0
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B.3.2 Case Imn = 0, Ren > 0, Total internal reflection implementation

If we use the naive
θi = arcsin(n0 sin θ0/ni)

do we get the θi which satisfies
Im(ni cos θi) > 0

in all cases? The answer is “Yes”, using the default arcsine branch-cut behavior of Python
and Mathematica (which are the same). At least, I randomly generated a few million exam-
ples and it always worked in both Python and Mathematica, even when n0 sin θ0 < 0.

B.3.3 Case Imn = 0, Ren > 0, Normal refraction

Here, Im(ni cos θi) = 0, so we get no information from whether the wave is decaying or
amplifying. The only criterion is Re[ni cos θi] > 0 and Re[n∗i cos θ∗i ] > 0 (meaning the
Poynting vector points forward, R < 1, T > 0). In this case it simplifies to ni cos θi > 0.

B.3.4 Case Imn = 0, Ren > 0, Normal refraction implementation

If we use the naive
θi = arcsin(n0 sin θ0/ni)

do we get the θi which satisfies
ni cos θi > 0

in all cases? The answer is “Yes”: In both Python and Mathematica, arcsin for real argu-
ments between −1 and 1 returns an angle between −π/2 and π/2, i.e. an angle with positive
cosine.

B.4 Stuff I didn’t bother with

I’m not interested in stimulated emission or negative-index metamaterials so I haven’t bother
to check these cases. Well, I started out of curiosity, enough to convince myself that things
make sense, but didn’t finish.

B.4.1 Case that Imn < 0, Ren < 0

This is not stimulated emission, despite Imn < 0. It is absorption.[ Remember, with Ren <
0, the direction the wave is “really moving” (the direction of the Poynting vector) is opposite
the direction of the wavevector. When Imn < 0, the wave is amplifying in the direction of
the wavevector, so it’s “really” decaying.]
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Therefore the required criteria are the same as for ordinary absorbing media with Imn > 0
and Ren > 0: Im(n cos θ) > 0 (the Ef wave decays rather than amplifies), Re[n cos θ] ≥ 0 for
s-polarization and Re[n cos θ∗] ≥ 0 for p-polarization (the Ef wave carries energy forwards
and R < 1 and T > 0.)

If we flip the sign of ni, we do not effect
√
n2
i − (n0 sin θ0)2, so we do not affect cos θi (up

to a possible sign-flip) nor do we affect (ni cos θi) (up to a possible sign-flip). Therefore the
proof is exactly the same as before that the two requirements are consistent with each other.

B.4.2 Case that Imn < 0, Ren < 0 implementation

Didn’t bother to check.

B.4.3 Case that Imn = 0, Ren < 0

Didn’t bother to check.

B.4.4 Case of stimulated emission

Didn’t bother to check.
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