
Tutorial: Environment for Tree
Exploration
Release 2.1 beta

Jaime Huerta-Cepas

December 19, 2011

Contents

1 Download and Install 3
1.1 GNU/Linux . 3
1.2 MacOS . 4
1.3 Older Versions . 5

2 Changelog history 7
2.1 What’s new in ETE 2.1 . 7

3 The ETE tutorial 11
3.1 Working With Tree Data Structures . 11
3.2 The Programmable Tree Drawing Engine . 33
3.3 Phylogenetic Trees . 51
3.4 Clustering Trees . 64
3.5 The PhylomeDB API . 69
3.6 Phylogenetic XML standards . 70
3.7 Overview . 78

4 ETE’s Reference Guide 81
4.1 Master Tree class . 81
4.2 Treeview module . 88
4.3 PhyloTree class . 96
4.4 Clustering module . 98
4.5 Nexml module . 99
4.6 Phyloxml Module . 114
4.7 PhylomeDB3 Connector . 117
4.8 Seqgroup class . 120
4.9 WebTreeApplication object . 121

5 Frequently Asked Questions (FAQs) 123
5.1 GENERAL . 123

6 Help and Support 127

7 About ETE 129

i

7.1 People using ETE . 129

Python Module Index 131

Index 133

ii

Tutorial: Environment for Tree Exploration, Release 2.1 beta

[Download PDF documentation] ||

Contents 1

Tutorial: Environment for Tree Exploration, Release 2.1 beta

2 Contents

CHAPTER 1

Download and Install

Contents

• Download and Install
– GNU/Linux

* Meeting dependencies (Debian based distributions)
* Meeting dependencies (other GNU/Linux distributions)
* Installing or Upgrading ETE

– MacOS
– Older Versions

1.1 GNU/Linux

ETE requires python>=2.5 as well as several dependencies (required only to enable particular functions,
but highly recommended):

• python-qt4 (>=4.5) [Enables tree visualization and image rendering]

• python-mysqldb (>=1.2) [Enables programmatic access to PhylomeDB]

• python-numpy (Required to work with clustering trees)

• python-lxml [Required to work whit NexML and PhyloXML phylogenetic formats]

• python-setuptools [Optional. Allows to install and upgrade ETE]

1.1.1 Meeting dependencies (Debian based distributions)

ETE is developed and tested under Debian based distributions (i.e. Ubuntu). All the above mentioned
dependencies are in the official repositories of Debian and can be installed using a package manager
such as APT, Synaptics or Adept. For instance, in Ubuntu you can use the following shell command to
install all dependencies:

$ apt-get install python-setuptools python-numpy python-qt4 python-scipy python-mysqldb python-lxml

3

Tutorial: Environment for Tree Exploration, Release 2.1 beta

1.1.2 Meeting dependencies (other GNU/Linux distributions)

In Non Debian based distributions, dependencies may not be necessarily found in their official reposito-
ries. If this occurs, libraries should be downloaded separately or installed from third part repositories. In
general, this process should not entail important difficulties, except for PyQt4, which is a python bind-
ing to the new Qt4 libraries. Some distributions (i.e. CentOS, Fefora) do not include recent packages
and cross-dependencies for such libraries yet. In such cases, manual compilation of libraries could be
required.

1.1.3 Installing or Upgrading ETE

Easy Install is the best way to install ETE and keep it up to date. EasyInstall is a python module bundled
with setuptools that lets you automatically download, build, install, and manage Python packages. If the
easy_install command is available in your system, you can execute this shell command to install/update
ETE.

$ easy_install -U ete2

Alternatively, you can download the last version of ETE from http://pypi.python.org/pypi/ete2/, decom-
press the file and install the package by executing the setup installer:

$ python setup.py install

1.2 MacOS

ETE and all its dependencies are supported by MacOS Intel environments, however you will need to
install some libraries from the external GNU/open-source repositories. This can be done easily by using
MacPorts.

The following recipe has been reported to work in MacOS 10.5.8 (thanks to Marco Mariotti and Alexis
Grimaldi at the CRG):

1. Install Mac Developer tools and X11 (required by Macports)

2. Install Macports in your system: http://www.macports.org/install.php

3. Install the following packages from the macports repository by using the “sudo port install [pack-
age_name]” syntax (note that some packages may take a long time to be built and that you will
need to have an active internet connection during the installation process): * python26 * py26-
numpy * py26-scipy * py26-pyqt4 * py26-mysql * py26-lxml

4. Download the setup installer of the last ETE version (http://ete.cgenomics.org/releases/ete2), un-
compress it, enter its folder and run: “sudo python setup.py install” Once the installation has
finished, you will be able to load ETE (import ete2) when running the “right” python binary.

Note: If step 4 doesn’t work, make sure that the python version your are us-
ing to install ETE is the one installed by MacPorts. This is usually located in
/opt/local/Library/Frameworks/Python.framework/Versions/2.6/bin/python2.6.
By contrast, non-Macport python version is the one located in
/Library/Frameworks/Python.framework/Versions/2.6/bin/python2.6, so
check that you are using the correct python executable.

4 Chapter 1. Download and Install

http://pypi.python.org/pypi/ete2/
http://www.macports.org/install.php
http://ete.cgenomics.org/releases/ete2

Tutorial: Environment for Tree Exploration, Release 2.1 beta

1.3 Older Versions

Older ETE versions can be found at http://ete.cgenomics.org/releases/ete2/

1.3. Older Versions 5

http://ete.cgenomics.org/releases/ete2/

Tutorial: Environment for Tree Exploration, Release 2.1 beta

6 Chapter 1. Download and Install

CHAPTER 2

Changelog history

2.1 What’s new in ETE 2.1

• A basic standalone tree visualization program called “ete2” is now installed along with the pack-
age.

• The drawing engine has been completely rewritten to provide the following new features:

– Added TreeStyle class allowing to set the following

* Added circular tree drawing mode

* Added tree title face block (Text or images that rendered on top of the tree)

* Added tree legend face block (Text or images that rendered as image legend)

* Added support for tree rotation and orientation

* Possibility of drawing aligned faces as a table

* Added header and footer regions for aligned faces.

* And more! Check TreeStyle documentation

– Added new face positions float, branch-top and branch-bottom. See tutorial (Node faces)
for more details.

– Added several Face attributes:

* face border

* face background color

* left, right, top and bottom margins

* face opacity

* horizontal and vertical alignment (useful when faces are rendered as table)

– Added support for predefined NodeStyle, which can be set outside the layout function
(allows to save and export image rendering info)

– Added new face types:

* CircleFace (basic circle/sphere forms)

7

Tutorial: Environment for Tree Exploration, Release 2.1 beta

* TreeFace (trees within trees)

* StaticItemFace and DynamicItemFace (create custom and interactive Qt-
GraphicsItems)

– Improved faces:

* AttrFace accepts prefix and suffix text, as well as a text formatter function.
fstyle argument can be set to italic

* TextFace: fstyle argument can be set to italic

– Save and export images

* Added full support for SVG image rendering

* Added more options to the TreeNode.render() function to control image size
and resolution

– Added support for SVG_COLORS names in faces and node styles

• Core methods:

– Added TreeNode.copy(): returns an exact and independent copy of node and all
its attributes

– Added TreeNode.convert_to_ultrametric(): converts all branch lengths to
allow leaves to be equidistant to root

– Added TreeNode.sort_descendants(): sort tree branches according to node
names.

– Added TreeNode.ladderize(): sort tree branches according to partition size

– Added TreeNode.get_partitions(): return the set of all possible partitions
grouping leaf nodes

– Tree nodes can now be fully exported using cPickle

– Newick parser can read and export branch distances and support values using scientific
notation

– TreeNode.swap_childs() method has changed to
TreeNode.swap_children()

• Added ete2.nexml module (read and write nexml format)

• Added ete2.phyloxml module (read and write phyloxml format)

• Added ete2.webplugin module: Allows to create interactive web tree applications

• Tree visualization GUI checks now for newer version of the ETE package.

• Added PhylomeDB3Connector

• Added PhyloNode.get_farthest_oldest_node() function, which allows to find the
best outgroup node in a tree, even if it is an internal node.

• Bug Fixes and improvements:

– Fix: TreeNode.get_common_ancestor() accepts a single argument (node or
list of nodes) instead of a succession or nodes. It can also return the path of each node
to the parent.

8 Chapter 2. Changelog history

Tutorial: Environment for Tree Exploration, Release 2.1 beta

– Fix: Fast scroll based zoom-in was producing tree image inversions

– Fix: Phylip parser does not truncate long names by default

– Fix: “if not node” syntax was using a len(node) test, which made it totally inefficient.
Now, the same expression returns always True

– Improvement: Traversing methods are now much faster (specially preorder and level-
order)

– Improvement: Faster populate function (added possibility of random and non-random
branch lengths)

– Improvement: Faster prune function

– Improvement: unicode support for tree files

– Improvement: Added newick support for scientific notation in branch lengths

• Improved documentation and examples:

– Online and PDF tutorial

– Better library reference

– A set of examples is now provided with the installation package and here

2.1. What’s new in ETE 2.1 9

http://ete.cgenomics.org/releases/ete2/examples-ete2.tar.gz

Tutorial: Environment for Tree Exploration, Release 2.1 beta

10 Chapter 2. Changelog history

CHAPTER 3

The ETE tutorial

Contents:

3.1 Working With Tree Data Structures

11

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Contents

• Working With Tree Data Structures
– Trees
– Reading and Writing Newick Trees

* Reading newick trees
* Writing newick trees

– Understanding ETE Trees
– Basic tree attributes

* Root node on unrooted trees?
– Browsing trees

* Getting Leaves, Descendants and Node’s Relatives
* Traversing (browsing) trees
* Iterating instead of Getting
* Finding nodes by their attributes

· Search_all nodes matching a given criteria
· Search nodes matching a given criteria (iteration)
· Find the first common ancestor
· Custom searching functions
· Shortcuts

– Node annotation
– Modifying Tree Topology

* Creating Trees from Scratch
* Deleting (eliminating) and Removing (detaching) nodes

– Pruning trees
– Concatenating trees
– Tree Rooting
– Working with branch distances

* Getting distances between nodes
* getting midpoint outgroup

3.1.1 Trees

Trees are a widely-used type of data structure that emulates a tree design with a set of linked nodes.
Formally, a tree is considered an acyclic and connected graph. Each node in a tree has zero or more
child nodes, which are below it in the tree (by convention, trees grow down, not up as they do in nature).
A node that has a child is called the child’s parent node (or ancestor node, or superior). A node has at
most one parent.

The height of a node is the length of the longest downward path to a leaf from that node. The height of
the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root
path).

• The topmost node in a tree is called the root node. Being the topmost node, the root node will
not have parents. It is the node at which operations on the tree commonly begin (although some
algorithms begin with the leaf nodes and work up ending at the root). All other nodes can be
reached from it by following edges or links. Every node in a tree can be seen as the root node of
the subtree rooted at that node.

• Nodes at the bottommost level of the tree are called leaf nodes. Since they are at the bottommost
level, they do not have any children.

12 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• An internal node or inner node is any node of a tree that has child nodes and is thus not a leaf
node.

• A subtree is a portion of a tree data structure that can be viewed as a complete tree in itself.
Any node in a tree T, together with all the nodes below it, comprise a subtree of T. The subtree
corresponding to the root node is the entire tree; the subtree corresponding to any other node is
called a proper subtree (in analogy to the term proper subset).

In bioinformatics, trees are the result of many analyses, such as phylogenetics or clustering. Although
each case entails specific considerations, many properties remains constant among them. In this respect,
ETE is a python toolkit that assists in the automated manipulation, analysis and visualization of any
type of hierarchical trees. It provides general methods to handle and visualize tree topologies, as well as
specific modules to deal with phylogenetic and clustering trees.

3.1.2 Reading and Writing Newick Trees

The Newick format is one of the most widely used standard representation of trees in bioinformatics.
It uses nested parentheses to represent hierarchical data structures as text strings. The original newick
standard is able to encode information about the tree topology, branch distances and node names. Nev-
ertheless, it is not uncommon to find slightly different formats using the newick standard.

ETE can read and write many of them:

FOR-
MAT

DESCRIPTION SAMPLE

0 flexible with support values ((D:0.723274,F:0.567784)1.000000:0.067192,(B:0.279326,H:0.756049)1.000000:0.807788);
1 flexible with internal node

names
((D:0.723274,F:0.567784)E:0.067192,(B:0.279326,H:0.756049)B:0.807788);

2 all branches + leaf names +
internal supports

((D:0.723274,F:0.567784)1.000000:0.067192,(B:0.279326,H:0.756049)1.000000:0.807788);

3 all branches + all names ((D:0.723274,F:0.567784)E:0.067192,(B:0.279326,H:0.756049)B:0.807788);
4 leaf branches + leaf names ((D:0.723274,F:0.567784),(B:0.279326,H:0.756049));
5 internal and leaf branches +

leaf names
((D:0.723274,F:0.567784):0.067192,(B:0.279326,H:0.756049):0.807788);

6 internal branches + leaf
names

((D,F):0.067192,(B,H):0.807788);

7 leaf branches + all names ((D:0.723274,F:0.567784)E,(B:0.279326,H:0.756049)B);
8 all names ((D,F)E,(B,H)B);
9 leaf names ((D,F),(B,H));
100 topology only ((,),(,));

Formats labeled as flexible allow for missing information. For instance, format 0 will be able to load a
newick tree even if it does not contain branch support information (it will be initialized with the default
value). However, format 2 would raise an exception. In other words, if you want to control that your
newick files strictly follow a given pattern you should use strict format definitions.

Reading newick trees

In order to load a tree from a newick text string you can use the constructor TreeNode or its Tree
alias, provided by the main module ete2. You will only need to pass a text string containing the newick
structure and the format that should be used to parse it (0 by default). Alternatively, you can pass the
path to a text file containing the newick string.

3.1. Working With Tree Data Structures 13

Tutorial: Environment for Tree Exploration, Release 2.1 beta

from ete2 import Tree

Loads a tree structure from a newick string. The returned variable ’t’ is the root node for the tree.
t = Tree("(A:1,(B:1,(E:1,D:1):0.5):0.5);")

Load a tree structure from a newick file.
t = Tree("genes_tree.nh")

You can also specify the newick format. For instance, for named internal nodes we will use format 1.
t = Tree("(A:1,(B:1,(E:1,D:1)Internal_1:0.5)Internal_2:0.5)Root;", format=1)

Writing newick trees

Any ETE tree instance can be exported using newick notation using the Tree.write() method,
which is available in any tree node instance. It also allows for format selection (Reading and Writing
Newick Trees), so you can use the same function to convert between newick formats.

from ete2 import Tree

Loads a tree with internal node names
t = Tree("(A:1,(B:1,(E:1,D:1)Internal_1:0.5)Internal_2:0.5)Root;", format=1)

And prints its newick using the default format

print t.write() # (A:1.000000,(B:1.000000,(E:1.000000,D:1.000000)1.000000:0.500000)1.000000:0.500000);

To print the internal node names you need to change the format:

print t.write(format=1) # (A:1.000000,(B:1.000000,(E:1.000000,D:1.000000)Internal_1:0.500000)Internal_2:0.500000);

We can also write into a file
t.write(format=1, outfile="new_tree.nw")

3.1.3 Understanding ETE Trees

Any tree topology can be represented as a succession of nodes connected in a hierarchical way. Thus,
for practical reasons, ETE makes no distinction between tree and node concepts, as any tree can be
represented by its root node. This allows to use any internal node within a tree as another sub-tree
instance.

Once trees are loaded, they can be manipulated as normal python objects. Given that a tree is actually a
collection of nodes connected in a hierarchical way, what you usually see as a tree will be the root node
instance from which the tree structure is hanging. However, every node within a ETE’s tree structure
can be also considered a subtree. This means, for example, that all the operational methods that we will
review in the following sections are available at any possible level within a tree. Moreover, this feature
will allow you to separate large trees into smaller partitions, or concatenate several trees into a single
structure. For this reason, you will find that the TreeNode and Tree classes are synonymous.

3.1.4 Basic tree attributes

Each tree node has two basic attributes used to establish its position in the tree: TreeNode.up and
TreeNode.children. The first is a pointer to parent’s node, while the later is a list of children

14 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

nodes. Although it is possible to modify the structure of a tree by changing these attributes, it is strongly
recommend not to do it. Several methods are provided to manipulate each node’s connections in a safe
way (see Modifying Tree Topology).

In addition, three other basic attributes are always present in any tree node instance:

Method Description Default
value

TreeNode.dist stores the distance from the node to its parent (branch length).
Default value = 1.0

1.0

TreeNode.supportinforms about the reliability of the partition defined by the node
(i.e. bootstrap support)

1.0

TreeNode.name Custom node’s name. NoName

In addition, several methods are provided to perform basic operations on tree node instances:

Method Description
TreeNode.is_leaf() returns True if node has no children
TreeNode.is_root() returns True if node has no parent
TreeNode.get_tree_root() returns the top-most node within the same tree structure as node
len(TreeNode) returns the number of leaves under node
print node prints a text-based representation of the tree topology under node
if node in tree returns true if node is a leaf under tree
for leaf in node iterates over all leaves under node
TreeNode.show() Explore node graphically using a GUI.

This is an example on how to access such attributes:

from ete2 import Tree
t = Tree()
We create a random tree topology
t.populate(15)
print t
print t.children
print t.get_children()
print t.up
print t.name
print t.dist
print t.is_leaf()
print t.get_tree_root()
print t.children[0].get_tree_root()
print t.children[0].children[0].get_tree_root()
You can also iterate over tree leaves using a simple syntax
for leaf in t:

print leaf.name

Root node on unrooted trees?

When a tree is loaded from external sources, a pointer to the top-most node is returned. This is called
the tree root, and it will exist even if the tree is conceptually considered as unrooted. This is, the root
node can be considered as the master node, since it represents the whole tree structure. Unrooted trees
can be identified as trees in which master root node has more than two children.

from ete2 import Tree
unrooted_tree = Tree("(A,B,(C,D));")

3.1. Working With Tree Data Structures 15

Tutorial: Environment for Tree Exploration, Release 2.1 beta

print unrooted_tree
#
/-A
|
#----|--B
|
| /-C
\---|
\-D

rooted_tree = Tree("((A,B).(C,D));")
print rooted_tree
#
/-A
/---|
| \-B
#----|
| /-C
\---|
\-D

3.1.5 Browsing trees

One of the most basic operations for tree analysis is tree browsing. This is, essentially, visiting nodes
within a tree. ETE provides a number of methods to search for specific nodes or to navigate over the
hierarchical structure of a tree.

Getting Leaves, Descendants and Node’s Relatives

TreeNode instances contain several functions to access their descendants. Available methods are self
explanatory:

TreeNode.get_descendants([strategy, is_leaf_fn]) Returns a list of all (leaves and internal) descendant nodes.
TreeNode.get_leaves([is_leaf_fn]) Returns the list of terminal nodes (leaves) under this node.
TreeNode.get_leaf_names([is_leaf_fn]) Returns the list of terminal node names under the current node.
TreeNode.get_children() Returns an independent list of node’s children.
TreeNode.get_sisters() Returns an indepent list of sister nodes.

Traversing (browsing) trees

Often, when processing trees, all nodes need to be visited. This is called tree traversing. There are
different ways to traverse a tree structure depending on the order in which children nodes are visited.
ETE implements the three most common strategies: preorder, levelorder and postorder. The following
scheme shows the differences in the strategy for visiting nodes (note that in both cases the whole tree is
browsed):

• preorder: 1)Visit the root, 2) Traverse the left subtree , 3) Traverse the right subtree.

• postorder: 1) Traverse the left subtree , 2) Traverse the right subtree, 3) Visit the root

• levelorder (default): every node on a level before is visited going to a lower level

16 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Note:

• Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)

• Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right); note how this produces a
sorted sequence

• Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)

• Level-order traversal sequence: F, B, G, A, D, I, C, E, H

Every node in a tree includes a TreeNode.traverse() method, which can be used
to visit, one by one, every node node under the current partition. In addition, the
TreeNode.iter_descendants() method can be set to use either a post- or a preorder strategy.
The only different between TreeNode.traverse() and TreeNode.iter_descendants() is
that the first will include the root node in the iteration.

TreeNode.traverse([strategy, is_leaf_fn]) Returns an iterator to traverse the tree structure under this node.
TreeNode.iter_descendants([strategy, is_leaf_fn]) Returns an iterator over all descendant nodes.
TreeNode.iter_leaves([is_leaf_fn]) Returns an iterator over the leaves under this node.

strategy can take one of the following values: "postorder", "preorder" or "levelorder"

we load a tree
t = Tree(’((((H,K)D,(F,I)G)B,E)A,((L,(N,Q)O)J,(P,S)M)C);’, format=1)

for node in t.traverse("postorder"):
Do some analysis on node
print node.name

If we want to iterate over a tree excluding the root node, we can
use the iter_descendant method
for node in t.iter_descendants("postorder"):

Do some analysis on node
print node.name

Additionally, you can implement your own traversing function using the structural attributes of nodes.
In the following example, only nodes between a given leaf and the tree root are visited.

from ete2 import Tree
tree = Tree("(A:1,(B:1,(C:1,D:1):0.5):0.5);")

Browse the tree from a specific leaf to the root
node = t.search_nodes(name="C")[0]
while node:

print node
node = node.up

Iterating instead of Getting

As commented previously, methods starting with get_ are all prepared to return results as a closed list
of items. This means, for instance, that if you want to process all tree leaves and you ask for them using
the TreeNode.get_leaves() method, the whole tree structure will be browsed before returning
the final list of terminal nodes. This is not a problem in most of the cases, but in large trees, you can
speed up the browsing process by using iterators.

3.1. Working With Tree Data Structures 17

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Most get_ methods have their homologous iterator functions. Thus, TreeNode.get_leaves()
could be substituted by TreeNode.iter_leaves(). The same occurs with
TreeNode.iter_descendants() and TreeNode.iter_search_nodes().

When iterators are used (note that is only applicable for looping), only one step is processed at a time. For
instance, TreeNode.iter_search_nodes() will return one match in each iteration. In practice,
this makes no differences in the final result, but it may increase the performance of loop functions (i.e.
in case of finding a match which interrupts the loop).

Finding nodes by their attributes

Both terminal and internal nodes can be located by searching along the tree structure. Several methods
are available:

method Description
t.search_nodes(attr=value) Returns a list of nodes in which attr is equal to value, i.e. name=A
t.iter_search_nodes(attr=value) Iterates over all matching nodes matching attr=value. Faster when

you only need to get the first occurrence
t.get_leaves_by_name(name) Returns a list of leaf nodes matching a given name. Only leaves are

browsed.
t.get_common_ancestor([node1,
node2, node3])

Return the first internal node grouping node1, node2 and node3

t&”A” Shortcut for t.search_nodes(name=”A”)[0]

Search_all nodes matching a given criteria

A custom list of nodes matching a given name can be easily obtain through the
TreeNode.search_node() function.

from ete2 import Tree
t = Tree(’((H:1,I:1):0.5, A:1, (B:1,(C:1,D:1):0.5):0.5);’)
print t
/-H
/--------|
| \-I
|
#---------|--A
|
| /-B
\--------|
| /-C
\--------|
\-D

I get D
D = t.search_nodes(name="D")[0]

I get all nodes with distance=0.5
nodes = t.search_nodes(dist=0.5)
print len(nodes), "nodes have distance=0.5"

We can limit the search to leaves and node names (faster method).
D = t.get_leaves_by_name(name="D")
print D

18 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Search nodes matching a given criteria (iteration)

A limitation of the TreeNode.search_nodes()method is that you cannot use complex conditional
statements to find specific nodes. When search criteria is too complex, you may need to create your own
search function.

from ete2 import Tree

def search_by_size(node, size):
"Finds nodes with a given number of leaves"
matches = []
for n in node.traverse():

if len(n) == size:
matches.append(n)

return matches

t = Tree()
t.populate(40)
returns nodes containing 6 leaves
search_by_size(t, size=6)

Find the first common ancestor

Searching for the first common ancestor of a given set of nodes it is a handy way of finding internal
nodes.

from ete2 import Tree
t = Tree("((H:0.3,I:0.1):0.5, A:1, (B:0.4,(C:0.5,(J:1.3, (F:1.2, D:0.1):0.5):0.5):0.5):0.5);")
print t
ancestor = t.get_common_ancestor("C", "J", "B")

Custom searching functions

A limitation of the previous methods is that you cannot use complex conditional statements to find
specific nodes. However you can user traversing methods to meet your custom filters. A possible
general strategy would look like this:

from ete2 import Tree
t = Tree("((H:0.3,I:0.1):0.5, A:1, (B:0.4,(C:1,D:1):0.5):0.5);")
Create a small function to filter your nodes
def conditional_function(node):

if node.dist > 0.3:
return True

else:
return False

Use previous function to find matches. Note that we use the traverse
method in the filter function. This will iterate over all nodes to
assess if they meet our custom conditions and will return a list of
matches.
matches = filter(conditional_function, t.traverse())
print len(matches), "nodes have ditance >0.3"

depending on the complexity of your conditions you can do the same

3.1. Working With Tree Data Structures 19

Tutorial: Environment for Tree Exploration, Release 2.1 beta

in just one line with the help of lambda functions:
matches = filter(lambda n: n.dist>0.3 and n.is_leaf(), t.traverse())
print len(matches), "nodes have ditance >0.3 and are leaves"

Shortcuts

Finally, ETE implements a built-in method to find the first node matching a given name, which is one of
the most common tasks needed for tree analysis. This can be done through the operator & (AND). Thus,
TreeNode&”A” will always return the first node whose name is “A” and that is under the tree “MyTree”.
The syntaxis may seem confusing, but it can be very useful in some situations.

from ete2 import Tree
t = Tree("((H:0.3,I:0.1):0.5, A:1, (B:0.4,(C:1,(J:1, (F:1, D:1):0.5):0.5):0.5):0.5);")
Get the node D in a very simple way
D = t&"D"
Get the path from B to the root
node = D
path = []
while node.up:

path.append(node)
node = node.up

print t
I substract D node from the total number of visited nodes
print "There are", len(path)-1, "nodes between D and the root"
Using parentheses you can use by-operand search syntax as a node
instance itself
Dsparent= (t&"C").up
Bsparent= (t&"B").up
Jsparent= (t&"J").up
I check if nodes belong to certain partitions
print "It is", Dsparent in Bsparent, "that C’s parent is under B’s ancestor"
print "It is", Dsparent in Jsparent, "that C’s parent is under J’s ancestor"

3.1.6 Node annotation

Every node contains three basic attributes: name (TreeNode.name), branch length
(TreeNode.dist) and branch support (TreeNode.support). These three values are en-
coded in the newick format. However, any extra data could be linked to trees. This is called tree
annotation.

The TreeNode.add_feature() and TreeNode.add_features()methods allow to add extra
attributes (features) to any node. The first allows to add one one feature at a time, while the second can
be used to add many features with the same call.

Once extra features are added, you can access their values at any time during the analysis of a tree. To
do so, you only need to access to the TreeNode.feature_name attributes.

Similarly, TreeNode.del_feature() can be used to delete an attribute.

import random
from ete2 import Tree
Creates a tree
t = Tree(’((H:0.3,I:0.1):0.5, A:1, (B:0.4,(C:0.5,(J:1.3, (F:1.2, D:0.1):0.5):0.5):0.5):0.5);’)

20 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Let’s locate some nodes using the get common ancestor method
ancestor=t.get_common_ancestor("J", "F", "C")
the search_nodes method (I take only the first match)
A = t.search_nodes(name="A")[0]
and using the shorcut to finding nodes by name
C= t&"C"
H= t&"H"
I= t&"I"

Let’s now add some custom features to our nodes. add_features can be
used to add many features at the same time.
C.add_features(vowel=False, confidence=1.0)
A.add_features(vowel=True, confidence=0.5)
ancestor.add_features(nodetype="internal")

Or, using the oneliner notation
(t&"H").add_features(vowel=False, confidence=0.2)

But we can automatize this. (note that i will overwrite the previous
values)
for leaf in t.traverse():

if leaf.name in "AEIOU":
leaf.add_features(vowel=True, confidence=random.random())

else:
leaf.add_features(vowel=False, confidence=random.random())

Now we use these information to analyze the tree.
print "This tree has", len(t.search_nodes(vowel=True)), "vowel nodes"
print "Which are", [leaf.name for leaf in t.iter_leaves() if leaf.vowel==True]

But features may refer to any kind of data, not only simple
values. For example, we can calculate some values and store them
within nodes.
#
Let’s detect leaf nodes under "ancestor" with distance higher thatn
1. Note that I’m traversing a subtree which starts from "ancestor"
matches = [leaf for leaf in ancestor.traverse() if leaf.dist>1.0]

And save this pre-computed information into the ancestor node
ancestor.add_feature("long_branch_nodes", matches)

Prints the precomputed nodes
print "These are nodes under ancestor with long branches", \

[n.name for n in ancestor.long_branch_nodes]

We can also use the add_feature() method to dynamically add new features.
label = raw_input("custom label:")
value = raw_input("custom label value:")
ancestor.add_feature(label, value)
print "Ancestor has now the [", label, "] attribute with value [", value, "]"

Unfortunately, newick format does not support adding extra features to a tree. Because of
this drawback, several improved formats haven been (or are being) developed to read and write
tree based information. Some of these new formats are based in a completely new standard
(Phylogenetic XML standards), while others are extensions of the original newick formar (NHX
http://phylosoft.org/NHX/http://phylosoft.org/NHX/).

3.1. Working With Tree Data Structures 21

http://phylosoft.org/NHX/http://phylosoft.org/NHX/

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Currently, ETE includes support for the New Hampshire eXtended format (NHX), which uses the orig-
inal newick standard and adds the possibility of saving additional date related to each tree node. Here is
an example of a extended newick representation in which extra information is added to an internal node:

(A:0.35,(B:0.72,(D:0.60,G:0.12):0.64[&&NHX:conf=0.01:name=INTERNAL]):0.56);

As you can notice, extra node features in the NHX format are enclosed between brackets. ETE is able to
read and write features using such format, however, the encoded information is expected to be exportable
as plain text.

The NHX format is automatically detected when reading a newick file, and the detected node features are
added using the TreeNode.add_feature()method. Consequently, you can access the information
by using the normal ETE’s feature notation: node.feature_name. Similarly, features added to a
tree can be included within the normal newick representation using the NHX notation. For this, you can
call the TreeNode.write() method using the features argument, which is expected to be a list
with the features names that you want to include in the newick string. Note that all nodes containing the
suplied features will be exposed into the newick string. Use an empty features list (features=[]) to
include all node’s data into the newick string.

import random
from ete2 import Tree
Creates a normal tree
t = Tree(’((H:0.3,I:0.1):0.5, A:1,(B:0.4,(C:0.5,(J:1.3,(F:1.2, D:0.1):0.5):0.5):0.5):0.5);’)
print t
Let’s locate some nodes using the get common ancestor method
ancestor=t.get_common_ancestor("J", "F", "C")
Let’s label leaf nodes
for leaf in t.traverse():

if leaf.name in "AEIOU":
leaf.add_features(vowel=True, confidence=random.random())

else:
leaf.add_features(vowel=False, confidence=random.random())

Let’s detect leaf nodes under "ancestor" with distance higher thatn
1. Note that I’m traversing a subtree which starts from "ancestor"
matches = [leaf for leaf in ancestor.traverse() if leaf.dist>1.0]

And save this pre-computed information into the ancestor node
ancestor.add_feature("long_branch_nodes", matches)
print
print "NHX notation including vowel and confidence attributes"
print
print t.write(features=["vowel", "confidence"])
print
print "NHX notation including all node’s data"
print

Note that when all features are requested, only those with values
equal to text-strings or numbers are considered. "long_branch_nodes"
is not included into the newick string.
print t.write(features=[])
print
print "basic newick formats are still available"
print
print t.write(format=9, features=["vowel"])
You don’t need to do anything speciall to read NHX notation. Just
specify the newick format and the NHX tags will be automatically

22 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

detected.
nw = """
(((ADH2:0.1[&&NHX:S=human:E=1.1.1.1], ADH1:0.11[&&NHX:S=human:E=1.1.1.1])
:0.05[&&NHX:S=Primates:E=1.1.1.1:D=Y:B=100], ADHY:0.1[&&NHX:S=nematode:
E=1.1.1.1],ADHX:0.12[&&NHX:S=insect:E=1.1.1.1]):0.1[&&NHX:S=Metazoa:
E=1.1.1.1:D=N], (ADH4:0.09[&&NHX:S=yeast:E=1.1.1.1],ADH3:0.13[&&NHX:S=yeast:
E=1.1.1.1], ADH2:0.12[&&NHX:S=yeast:E=1.1.1.1],ADH1:0.11[&&NHX:S=yeast:E=1.1.1.1]):0.1
[&&NHX:S=Fungi])[&&NHX:E=1.1.1.1:D=N];
"""
Loads the NHX example found at http://www.phylosoft.org/NHX/
t = Tree(nw)
And access node’s attributes.
for n in t.traverse():

if hasattr(n,"S"):
print n.name, n.S

3.1.7 Modifying Tree Topology

Creating Trees from Scratch

If no arguments are passed to the TreeNode class constructor, an empty tree node will be returned.
Such an orphan node can be used to populate a tree from scratch. For this, the TreeNode.up, and
TreeNode.children attributes should never be used (unless it is strictly necessary). Instead, several
methods exist to manipulate the topology of a tree:

TreeNode.populate(size[, names_library, ...]) Generates a random topology by populating current node.
TreeNode.add_child([child, name, dist, support]) Adds a new child to this node.
TreeNode.add_child([child, name, dist, support]) Adds a new child to this node.
TreeNode.delete([prevent_nondicotomic]) Deletes node from the tree structure.
TreeNode.detach() Detachs this node (and all its descendants) from its parent and returns the referent to itself.

from ete2 import Tree
t = Tree() # Creates an empty tree
A = t.add_child(name="A") # Adds a new child to the current tree root

and returns it
B = t.add_child(name="B") # Adds a second child to the current tree

root and returns it
C = A.add_child(name="C") # Adds a new child to one of the branches
D = C.add_sister(name="D") # Adds a second child to same branch as

before, but using a sister as the starting
point

R = A.add_child(name="R") # Adds a third child to the
branch. Multifurcations are supported

Next, I add 6 random leaves to the R branch names_library is an
optional argument. If no names are provided, they will be generated
randomly.
R.populate(6, names_library=["r1","r2","r3","r4","r5","r6"])
Prints the tree topology
print t
/-C
|
|--D
|

3.1. Working With Tree Data Structures 23

Tutorial: Environment for Tree Exploration, Release 2.1 beta

/--------| /-r4
| | /--------|
| | /--------| \-r3
| | | |
| | | \-r5
| \--------|
---------| | /-r6
| | /--------|
| \--------| \-r2
| |
| \-r1
|
\-B
a common use of the populate method is to quickly create example
trees from scratch. Here we create a random tree with 100 leaves.
t = Tree()
t.populate(100)

Deleting (eliminating) and Removing (detaching) nodes

As currently implemented, there is a difference between detaching and deleting a node. The former
disconnects a complete partition from the tree structure, so all its descendants are also disconnected
from the tree. There are two methods to perform this action: TreeNode.remove_child() and
TreeNode.detach(). In contrast, deleting a node means eliminating such node without affecting
its descendants. Children from the deleted node are automatically connected to the next possible parent.
This is better understood with the following example:

from ete2 import Tree
Loads a tree. Note that we use format 1 to read internal node names
t = Tree(’((((H,K)D,(F,I)G)B,E)A,((L,(N,Q)O)J,(P,S)M)C);’, format=1)
print "original tree looks like this:"
This is an alternative way of using "print t". Thus we have a bit
more of control on how tree is printed. Here i print the tree
showing internal node names
print t.get_ascii(show_internal=True)
#
/-H
/D-------|
| \-K
/B-------|
| | /-F
/A-------| \G-------|
| | \-I
| |
| \-E
#-NoName--|
| /-L
| /J-------|
| | | /-N
| | \O-------|
\C-------| \-Q
|
| /-P
\M-------|
\-S

24 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Get pointers to specific nodes
G = t.search_nodes(name="G")[0]
J = t.search_nodes(name="J")[0]
C = t.search_nodes(name="C")[0]
If we remove J from the tree, the whole partition under J node will
be detached from the tree and it will be considered an independent
tree. We can do the same thing using two approaches: J.detach() or
C.remove_child(J)
removed_node = J.detach() # = C.remove_child(J)
if we know print the original tree, we will see how J partition is
no longer there.
print "Tree after REMOVING the node J"
print t.get_ascii(show_internal=True)
/-H
/D-------|
| \-K
/B-------|
| | /-F
/A-------| \G-------|
| | \-I
| |
#-NoName--| \-E
|
| /-P
\C------- /M-------|
\-S
however, if we DELETE the node G, only G will be eliminated from the
tree, and all its descendants will then hang from the next upper
node.
G.delete()
print "Tree after DELETING the node G"
print t.get_ascii(show_internal=True)
/-H
/D-------|
| \-K
/B-------|
| |--F
/A-------| |
| | \-I
| |
#-NoName--| \-E
|
| /-P
\C------- /M-------|
\-S

3.1.8 Pruning trees

Pruning a tree means to obtain the topology that connects a certain group of items by removing the
unnecessary edges. To facilitate this task, ETE implements the TreeNode.prune() method, which
can be used by providing the list of terminal and/or internal nodes that must be kept in the tree.

from ete2 import Tree
Let’s create simple tree
t = Tree(’((((H,K),(F,I)G),E),((L,(N,Q)O),(P,S)));’)
print "Original tree looks like this:"

3.1. Working With Tree Data Structures 25

Tutorial: Environment for Tree Exploration, Release 2.1 beta

print t
#
/-H
/--------|
| \-K
/--------|
| | /-F
/--------| \--------|
| | \-I
| |
| \-E
#---------|
| /-L
| /--------|
| | | /-N
| | \--------|
\--------| \-Q
|
| /-P
\--------|
\-S
Prune the tree in order to keep only some leaf nodes.
t.prune(["H","F","E","Q", "P"])
print "Pruned tree"
print t
#
/-F
/--------|
/--------| \-H
| |
#---------| \-E
|
| /-Q
\--------|
\-P
Let’s re-create the same tree again

3.1.9 Concatenating trees

Given that all tree nodes share the same basic properties, they can be connected freely. In fact, any
node can add a whole subtree as a child, so we can actually cut & paste partitions. To do so, you only
need to call the TreeNode.add_child() method using another tree node as a first argument. If
such a node is the root node of a different tree, you will concatenate two structures. But caution!!, this
kind of operations may result into circular tree structures if add an node’s ancestor as a new node’s
child. Some basic checks are internally performed by the ETE topology related methods, however, a
fully qualified check of this issue would affect seriously the performance of the method. For this reason,
users themselves should take care about not creating circular structures by mistake.

from ete2 import Tree
Loads 3 independent trees
t1 = Tree(’(A,(B,C));’)
t2 = Tree(’((D,E), (F,G));’)
t3 = Tree(’(H, ((I,J), (K,L)));’)
print "Tree1:", t1
/-A

26 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

---------|
| /-B
\--------|
\-C
print "Tree2:", t2
/-D
/--------|
| \-E
---------|
| /-F
\--------|
\-G
print "Tree3:", t3
/-H
|
---------| /-I
| /--------|
| | \-J
\--------|
| /-K
\--------|
\-L
Locates a terminal node in the first tree
A = t1.search_nodes(name=’A’)[0]
and adds the two other trees as children.
A.add_child(t2)
A.add_child(t3)
print "Resulting concatenated tree:", t1
/-D
/--------|
| \-E
/--------|
| | /-F
| \--------|
/--------| \-G
| |
| | /-H
| | |
| \--------| /-I
| | /--------|
---------| | | \-J
| \--------|
| | /-K
| \--------|
| \-L
|
| /-B
\--------|
\-C

3.1.10 Tree Rooting

Tree rooting is understood as the technique by with a given tree is conceptually polarized from more
basal to more terminal nodes. In phylogenetics, for instance, this a crucial step prior to the interpretation
of trees, since it will determine the evolutionary relationships among the species involved. The concept
of rooted trees is different than just having a root node, which is always necessary to handle a tree data

3.1. Working With Tree Data Structures 27

Tutorial: Environment for Tree Exploration, Release 2.1 beta

structure. Usually, the way in which a tree is differentiated between rooted and unrooted, is by counting
the number of branches of the current root node. Thus, if the root node has more than two child branches,
the tree is considered unrooted. By contrast, when only two main branches exist under the root node,
the tree is considered rooted.

Having an unrooted tree means that any internal branch within the tree could be regarded as the root
node, and there is no conceptual reason to place the root node where it is placed at the moment. There-
fore, in an unrooted tree, there is no information about which internal nodes are more basal than others.
By setting the root node between a given edge/branch of the tree structure the tree is polarized, meaning
that the two branches under the root node are the most basal nodes. In practice, this is usually done by
setting an outgroup node, which would represent one of these main root branches. The second one will
be, obviously, the brother node. When you set an outgroup on unrooted trees, the multifurcations at the
current root node are solved.

In order to root an unrooted tree or re-root a tree structure, ETE implements the
TreeNode.set_outgroup() method, which is present in any tree node instance. Similarly,
the TreeNode.unroot() method can be used to perform the opposite action.

from ete2 import Tree
Load an unrooted tree. Note that three branches hang from the root
node. This usually means that no information is available about
which of nodes is more basal.
t = Tree(’(A,(H,F)(B,(E,D)));’)
print "Unrooted tree"
print t
/-A
|
| /-H
#---------|---------|
| \-F
|
| /-B
\--------|
| /-E
\--------|
\-D
#
Let’s define that the ancestor of E and D as the tree outgroup. Of
course, the definition of an outgroup will depend on user criteria.
ancestor = t.get_common_ancestor("E","D")
t.set_outgroup(ancestor)
print "Tree rooteda at E and D’s ancestor is more basal that the others."
print t
#
/-B
/--------|
| | /-A
| \--------|
| | /-H
#---------| \--------|
| \-F
|
| /-E
\--------|
\-D
#
Note that setting a different outgroup, a different interpretation

28 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

of the tree is possible
t.set_outgroup(t&"A")
print "Tree rooted at a terminal node"
print t
/-H
/--------|
| \-F
/--------|
| | /-B
| \--------|
#---------| | /-E
| \--------|
| \-D
|
\-A

Note that although rooting is usually regarded as a whole-tree operation, ETE allows to root subparts of
the tree without affecting to its parent tree structure.

from ete2 import Tree
t = Tree(’(((A,C),((H,F),(L,M))),((B,(J,K))(E,D)));’)
print "Original tree:"
print t
/-A
/--------|
| \-C
|
/--------| /-H
| | /--------|
| | | \-F
| \--------|
| | /-L
| \--------|
#---------| \-M
|
| /-B
| /--------|
| | | /-J
| | \--------|
\--------| \-K
|
| /-E
\--------|
\-D
#
Each main branch of the tree is independently rooted.
node1 = t.get_common_ancestor("A","H")
node2 = t.get_common_ancestor("B","D")
node1.set_outgroup("H")
node2.set_outgroup("E")
print "Tree after rooting each node independently:"
print t
#
/-F
|
/--------| /-L
| | /--------|
| | | \-M

3.1. Working With Tree Data Structures 29

Tutorial: Environment for Tree Exploration, Release 2.1 beta

| \--------|
/--------| | /-A
| | \--------|
| | \-C
| |
| \-H
#---------|
| /-D
| /--------|
| | | /-B
| | \--------|
\--------| | /-J
| \--------|
| \-K
|
\-E

3.1.11 Working with branch distances

The branch length between one node an its parent is encoded as the TreeNode.dist attribute. To-
gether with tree topology, branch lengths define the relationships among nodes.

Getting distances between nodes

The TreeNode.get_distance() method can be used to calculate the distance between two con-
nected nodes. There are two ways of using this method: a) by querying the distance between two
descendant nodes (two nodes are passed as arguments) b) by querying the distance between the current
node and any other relative node (parental or descendant).

from ete2 import Tree

Loads a tree with branch lenght information. Note that if no
distance info is provided in the newick, it will be initialized with
the default dist value = 1.0
nw = """(((A:0.1, B:0.01):0.001, C:0.0001):1.0,
(((((D:0.00001:0,I:0):0,F:0):0,G:0):0,H:0):0,
E:0.000001):0.0000001):2.0;"""
t = Tree(nw)
print t
/-A
/--------|
/--------| \-B
| |
| \-C
|
| /-D
| /--------|
#---------| /--------| \-I
| | |
| /--------| \-F
| | |
| /--------| \-G
| | |
\--------| \-H

30 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

|
\-E
#
Locate some nodes
A = t&"A"
C = t&"C"
Calculate distance from current node
print "The distance between A and C is", A.get_distance("C")
Calculate distance between two descendants of current node
print "The distance between A and C is", t.get_distance("A","C")
Calculate the toplogical distance (number of nodes in between)
print "The number of nodes between A and D is ", \

t.get_distance("A","D", topology_only=True)

Additionally to this, ETE incorporates two more methods to calculate the most distant node
from a given point in a tree. You can use the TreeNode.get_farthest_node() method
to retrieve the most distant point from a node within the whole tree structure. Alternatively,
TreeNode.get_farthest_leaf() will return the most distant descendant (always a leaf). If
more than one node matches the farthest distance, the first occurrence is returned.

Distance between nodes can also be computed as the number of nodes between them (considering all
branch lengths equal to 1.0). To do so, the topology_only argument must be set to True for all the above
mentioned methods.

Calculate the farthest node from E within the whole structure
farthest, dist = (t&"E").get_farthest_node()
print "The farthest node from E is", farthest.name, "with dist=", dist
Calculate the farthest node from E within the whole structure,
regarding the number of nodes in between as distance value
Note that the result is differnt.
farthest, dist = (t&"E").get_farthest_node(topology_only=True)
print "The farthest (topologically) node from E is", \

farthest.name, "with", dist, "nodes in between"
Calculate farthest node from an internal node
farthest, dist = t.get_farthest_node()
print "The farthest node from root is is", farthest.name, "with dist=", dist
#
The program results in the following information:
#
The distance between A and C is 0.1011
The distance between A and C is 0.1011
The number of nodes between A and D is 8.0
The farthest node from E is A with dist= 1.1010011
The farthest (topologically) node from E is I with 5.0 nodes in between
The farthest node from root is is A with dist= 1.101

getting midpoint outgroup

In order to obtain a balanced rooting of the tree, you can set as the tree outgroup that partition which
splits the tree in two equally distant clusters (using branch lengths). This is called the midpoint outgroup.

The TreeNode.get_midpoint_outgroup()method will return the outgroup partition that splits
current node into two balanced branches in terms of node distances.

from ete2 import Tree
generates a random tree

3.1. Working With Tree Data Structures 31

Tutorial: Environment for Tree Exploration, Release 2.1 beta

t = Tree();
t.populate(15);
print t
#
#
/-qogjl
/--------|
| \-vxbgp
|
| /-xyewk
#---------| |
| | /-opben
| | |
| | /--------| /-xoryn
\--------| | | /--------|
| | | | | /-wdima
| | \--------| \--------|
| | | \-qxovz
| | |
| | \-isngq
\--------|
| /-neqsc
| |
| | /-waxkv
| /--------| /--------|
| | | /--------| \-djeoh
| | | | |
| | \--------| \-exmsn
\--------| |
| | /-udspq
| \--------|
| \-buxpw
|
\-rkzwd
Calculate the midpoint node
R = t.get_midpoint_outgroup()
and set it as tree outgroup
t.set_outgroup(R)
print t
/-opben
|
/--------| /-xoryn
| | /--------|
| | | | /-wdima
| \--------| \--------|
/--------| | \-qxovz
| | |
| | \-isngq
| |
| | /-xyewk
| \--------|
| | /-qogjl
| \--------|
#---------| \-vxbgp
|
| /-neqsc
| |

32 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

| | /-waxkv
| /--------| /--------|
| | | /--------| \-djeoh
| | | | |
| | \--------| \-exmsn
\--------| |
| | /-udspq
| \--------|
| \-buxpw
|
\-rkzwd

3.2 The Programmable Tree Drawing Engine

Contents

• The Programmable Tree Drawing Engine
– Overview
– Interactive visualization of trees
– Rendering trees as images
– Customizing the aspect of trees

* Tree style
· Show leaf node names, branch length and branch support
· Change branch length scale (zoom in X)
· Change branch separation between nodes (zoom in Y)
· Rotate a tree
· circular tree in 180 degrees
· Add legend and title

* Node style
* Node faces

· Faces position
· Face properties

* layout functions
– Combining styles, faces and layouts

* Fixed node styles
* Node backgrounds
* Img Faces
* Bubble tree maps
* Trees within trees
* Creating your custom interactive Item faces

3.2.1 Overview

ETE’s treeview extension provides a highly programmable drawing system to render any hierarchical
tree structure as PDF, SVG or PNG images. Although several predefined visualization layouts are in-
cluded with the default installation, custom styles can be easily created from scratch.

Image customization is performed through four elements: a) TreeStyle, setting general options about
the image (shape, rotation, etc.), b) NodeStyle, which defines the specific aspect of each node (size,

3.2. The Programmable Tree Drawing Engine 33

Tutorial: Environment for Tree Exploration, Release 2.1 beta

color, background, line type, etc.), c) node faces.Face which are small pieces of extra graphical
information that can be added to nodes (text labels, images, graphs, etc.) d) a layout function, a
normal python function that controls how node styles and faces are dynamically added to nodes.

Images can be rendered as PNG, PDF or SVG files using the TreeNode.render() method or inter-
actively visualized using a built-in Graphical User Interface (GUI) invoked by the TreeNode.show()
method.

3.2.2 Interactive visualization of trees

ETE’s tree drawing engine is fully integrated with a built-in graphical user interface (GUI). Thus, ETE
allows to visualize trees using an interactive interface that allows to explore and manipulate node’s
properties and tree topology. To start the visualization of a node (tree or subtree), you can simply call
the TreeNode.show() method.

One of the advantages of this on-line GUI visualization is that you can use it to interrupt a given pro-
gram/analysis, explore the tree, manipulate them, and continuing with the execution thread. Note that
changes made using the GUI will be kept after quiting the GUI. This feature is specially useful for
using during python sessions, in which analyses are performed interactively.

The GUI allows many operations to be performed graphically, however it does not implement all the
possibilities of the programming toolkit.

from ete2 import Tree
t = Tree("((a,b),c);")
t.show()

3.2.3 Rendering trees as images

Tree images can be directly written as image files. SVG, PDF and PNG formats are supported. Note
that, while PNG images are raster images, PDF and SVG pictures are rendered as vector graphics, thus
allowing its later modification and scaling.

To generate an image, the TreeNode.render() method should be used instead of
TreeNode.show(). The only required argument is the file name, whose extension will determine
the image format (.PDF, .SVG or .PNG). Several parameters regarding the image size and resolution can
be adjusted:

Argument Description
units “px”: pixels, “mm”: millimeters, “in”: inches
h height of the image in units.
w weight of the image in units.
dpi dots per inches.

Note: If h and w values are both provided, image size will be adjusted even if it requires to break the
original aspect ratio of the image. If only one value (h or w) is provided, the other will be estimated to
maintain aspect ratio. If no sizing values are provided, image will be adjusted to A4 dimensions.

from ete2 import Tree
t = Tree("((a,b),c);")
t.render("mytree.png", w=183, units="mm")

34 Chapter 3. The ETE tutorial

http://en.wikipedia.org/wiki/Vector_graphics

Tutorial: Environment for Tree Exploration, Release 2.1 beta

3.2.4 Customizing the aspect of trees

Image customization is performed through four main elements:

Tree style

The TreeStyle class can be used to create a custom set of options that control the general aspect of
the tree image. Tree styles can be passed to the TreeNode.show() and TreeNode.render()
methods. For instance, TreeStyle allows to modify the scale used to render tree branches or choose
between circular or rectangular tree drawing modes.

from ete2 import Tree, TreeStyle

t = Tree("((a,b),c);")
circular_style = TreeStyle()
circular_style.mode = "c" # draw tree in circular mode
circular_style.scale = 20
t.render("mytree.png", w=183, units="mm", tree_style=circular_style)

Warning: A number of parameters can be controlled through custom tree style objetcs, check
TreeStyle documentation for a complete list of accepted values.

Some common uses include:

Show leaf node names, branch length and branch support

Change branch length scale (zoom in X)

Change branch separation between nodes (zoom in Y)

Rotate a tree

circular tree in 180 degrees

Add legend and title

from ete2 import Tree, TreeStyle, TextFace
t = Tree("((a,b),c);")
ts = TreeStyle()
ts.show_leaf_name = True
ts.title.add_face(TextFace("Hello ETE", fsize=20), column=0)
t.show(tree_style=ts)

3.2. The Programmable Tree Drawing Engine 35

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Figure 3.1: Automatically adds node names and branch information to the tree image:

from ete2 import Tree, TreeStyle
t = Tree()
t.populate(10, random_dist=True)
ts = TreeStyle()
ts.show_leaf_name = True
ts.show_branch_length = True
ts.show_branch_support = True
t.show(tree_style=ts)

Figure 3.2: Increases the length of the tree by changing the scale:

from ete2 import Tree, TreeStyle
t = Tree()
t.populate(10, random_dist=True)
ts = TreeStyle()
ts.show_leaf_name = True
ts.scale = 120 # 120 pixels per branch length unit
t.show(tree_style=ts)

36 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Figure 3.3: Increases the separation between leaf branches:

from ete2 import Tree, TreeStyle
t = Tree()
t.populate(10, random_dist=True)
ts = TreeStyle()
ts.show_leaf_name = True
ts.branch_vertical_margin = 10 # 10 pixels between adjacent branches
t.show(tree_style=ts)

Figure 3.4: Draws a rectangular tree from top to bottom:

from ete2 import Tree, TreeStyle
t = Tree()
t.populate(10)
ts = TreeStyle()
ts.show_leaf_name = True
ts.rotation = 90
t.show(tree_style=ts)

3.2. The Programmable Tree Drawing Engine 37

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Figure 3.5: Draws a circular tree using a semi-circumference:

from ete2 import Tree, TreeStyle
t = Tree()
t.populate(30)
ts = TreeStyle()
ts.show_leaf_name = True
ts.mode = "c"
ts.arc_start = -180 # 0 degrees = 3 o’clock
ts.arc_span = 180
t.show(tree_style=ts)

38 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Node style

Through the NodeStyle class the aspect of each single node can be controlled, including its size,
color, background and branch type.

A node style can be defined statically and attached to several nodes:

Figure 3.6: Simple tree in which the same style is applied to all nodes:

from ete2 import Tree, NodeStyle, TreeStyle
t = Tree("((a,b),c);")

Basic tree style
ts = TreeStyle()
ts.show_leaf_name = True

Draws nodes as small red spheres of diameter equal to 10 pixels
nstyle = NodeStyle()
nstyle["shape"] = "sphere"
nstyle["size"] = 10
nstyle["fgcolor"] = "darkred"

Gray dashed branch lines
nstyle["hz_line_type"] = 1
nstyle["hz_line_color"] = "#cccccc"

Applies the same static style to all nodes in the tree. Note that,
if "nstyle" is modified, changes will affect to all nodes
for n in t.traverse():

n.set_style(nstyle)

t.show(tree_style=ts)

If you want to draw nodes with different styles, an independent NodeStyle instance must be
created for each node. Note that node styles can be modified at any moment by accessing the
TreeNode.img_style attribute.

Static node styles, set through the set_style() method, will be attached to the nodes and exported
as part of their information. For instance, TreeNode.copy() will replicate all node styles in the
replicate tree. Note that node styles can be also modified on the fly through a layout function (see
layout functions)

Node faces

Node faces are small pieces of graphical information that can be linked to nodes. For instance, text
labels or external images could be linked to nodes and they will be plotted within the tree image.

Several types of node faces are provided by the main ete2 module, ranging from simple
text (TextFace) and geometric shapes (CircleFace), to molecular sequence representations
(SequenceFace), heatmaps and profile plots (ProfileFace). A complete list of available faces
can be found at the ete2.treeview reference page..

3.2. The Programmable Tree Drawing Engine 39

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Figure 3.7: Simple tree in which the different styles are applied to each node:

from ete2 import Tree, NodeStyle, TreeStyle
t = Tree("((a,b),c);")

Basic tree style
ts = TreeStyle()
ts.show_leaf_name = True

Creates an independent node style for each node, which is
initialized with a red foreground color.
for n in t.traverse():

nstyle = NodeStyle()
nstyle["fgcolor"] = "red"
nstyle["size"] = 15
n.set_style(nstyle)

Let’s now modify the aspect of the root node
t.img_style["size"] = 30
t.img_style["fgcolor"] = "blue"

t.show(tree_style=ts)

Faces position

Faces can be added to different areas around the node, namely branch-right, branch-top, branch-
bottom or aligned. Each area represents a table in which faces can be added through the
TreeNode.add_face() method. For instance, if two text labels want to be drawn bellow the branch
line of a given node, a pair of TextFace faces can be created and added to the columns 0 and 1 of the
branch-bottom area:

from ete2 import Tree, TreeStyle, TextFace
t = Tree("((a,b),c);")

Basic tree style
ts = TreeStyle()
ts.show_leaf_name = True

Add two text faces to different columns
t.add_face(TextFace("hola "), column=0, position = "branch-right")
t.add_face(TextFace("mundo!"), column=1, position = "branch-right")
t.show(tree_style=ts)

If you add more than one face to the same area and column, they will be piled up. See the following
image as an example of face positions:

Figure 3.8: Source code used to generate the above image.

40 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Note: Once a face object is created, it can be linked to one or more nodes. For instance, the same text
label can be recycled and added to several nodes.

Face properties

Apart from the specific config values of each face type, all face instances contain same basic attributes
that permit to modify general aspects such as margins, background colors, border, etc. A complete list
of face attributes can be found in the general Face class documentation. Here is a very simple example:

Figure 3.9: Basic use of face general attributes

from ete2 import Tree, TreeStyle, TextFace

t = Tree("(a,b);")

Basic tree style
ts = TreeStyle()
ts.show_leaf_name = True
ts.tree_width = 80

Creates two faces
hola = TextFace("hola")
mundo = TextFace("mundo")

Set some attributes
hola.margin_top = 10
hola.margin_right = 10
hola.margin_left = 10
hola.margin_bottom = 10
hola.opacity = 0.5 # from 0 to 1
hola.inner_border.width = 1 # 1 pixel border
hola.inner_border.type = 1 # dashed line
hola.border.width = 1
hola.background.color = "LightGreen"

t.add_face(hola, column=0, position = "branch-top")
t.add_face(mundo, column=1, position = "branch-bottom")

t.show(tree_style=ts)

3.2. The Programmable Tree Drawing Engine 41

Tutorial: Environment for Tree Exploration, Release 2.1 beta

layout functions

Layout functions act as pre-drawing hooking functions. This means, when a node is about to be drawn,
it is first sent to a layout function. Node properties, style and faces can be then modified on the fly
and return it to the drawer engine. Thus, layout functions can be understood as a collection of rules
controlling how different nodes should be drawn.

from ete2 import Tree
t = Tree("((((a,b),c), d), e);")

def abc_layout(node):
vowels = set(["a", "e", "i", "o", "u"])
if node.name in vowels:

Note that node style are already initialized with the
default values

node.img_style["size"] = 15
node.img_style["color"] = "red"

Basic tree style
ts = TreeStyle()
ts.show_leaf_name = True

Add two text faces to different columns
t.add_face(TextFace("hola "), column=0, position = "branch-right")
t.add_face(TextFace("mundo!"), column=1, position = "branch-right")
t.show(tree_style=ts)

3.2.5 Combining styles, faces and layouts

Examples are probably the best way to show how ETE works:

Fixed node styles

from ete2 import Tree, faces, AttrFace, TreeStyle, NodeStyle

def layout(node):
If node is a leaf, add the nodes name and a its scientific name
if node.is_leaf():

faces.add_face_to_node(AttrFace("name"), node, column=0)

t = Tree()
t.populate(8)

Node style handling is no longer limited to layout functions. You
can now create fixed node styles and use them many times, save them
or even add them to nodes before drawing (this allows to save and

42 Chapter 3. The ETE tutorial

http://en.wikipedia.org/wiki/Hooking

Tutorial: Environment for Tree Exploration, Release 2.1 beta

reproduce an tree image design)

Set bold red branch to the root node
style = NodeStyle()
style["fgcolor"] = "#0f0f0f"
style["size"] = 0
style["vt_line_color"] = "#ff0000"
style["hz_line_color"] = "#ff0000"
style["vt_line_width"] = 8
style["hz_line_width"] = 8
style["vt_line_type"] = 0 # 0 solid, 1 dashed, 2 dotted
style["hz_line_type"] = 0
t.set_style(style)

#Set dotted red lines to the first two branches
style1 = NodeStyle()
style1["fgcolor"] = "#0f0f0f"
style1["size"] = 0
style1["vt_line_color"] = "#ff0000"
style1["hz_line_color"] = "#ff0000"
style1["vt_line_width"] = 2
style1["hz_line_width"] = 2
style1["vt_line_type"] = 2 # 0 solid, 1 dashed, 2 dotted
style1["hz_line_type"] = 2
t.children[0].img_style = style1
t.children[1].img_style = style1

Set dashed blue lines in all leaves
style2 = NodeStyle()
style2["fgcolor"] = "#000000"
style2["shape"] = "circle"
style2["vt_line_color"] = "#0000aa"
style2["hz_line_color"] = "#0000aa"
style2["vt_line_width"] = 2
style2["hz_line_width"] = 2
style2["vt_line_type"] = 1 # 0 solid, 1 dashed, 2 dotted
style2["hz_line_type"] = 1
for l in t.iter_leaves():

l.img_style = style2

ts = TreeStyle()
ts.layout_fn = layout
ts.show_leaf_name = False
t.render("node_style.png", w=400, tree_style=ts)

Node backgrounds

from ete2 import Tree, faces, AttrFace, TreeStyle, NodeStyle

def layout(node):
if node.is_leaf():

N = AttrFace("name", fsize=30)
faces.add_face_to_node(N, node, 0, position="aligned")

3.2. The Programmable Tree Drawing Engine 43

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Set dashed blue lines in all leaves
nst1 = NodeStyle()
nst1["bgcolor"] = "LightSteelBlue"
nst2 = NodeStyle()
nst2["bgcolor"] = "Moccasin"
nst3 = NodeStyle()
nst3["bgcolor"] = "DarkSeaGreen"
nst4 = NodeStyle()
nst4["bgcolor"] = "Khaki"

t = Tree("((((a1,a2),a3), ((b1,b2),(b3,b4))), ((c1,c2),c3));")

n1 = t.get_common_ancestor("a1", "a2", "a3")
n1.set_style(nst1)
n2 = t.get_common_ancestor("b1", "b2", "b3", "b4")
n2.set_style(nst2)
n3 = t.get_common_ancestor("c1", "c2", "c3")
n3.set_style(nst3)
n4 = t.get_common_ancestor("b3", "b4")
n4.set_style(nst4)
ts = TreeStyle()
ts.layout_fn = layout
ts.show_leaf_name = False

ts.mode = "c"
t.render("node_background.png", w=400, tree_style=ts)
t.show(tree_style=ts)

Img Faces

Note that images are attached to terminal and internal nodes.

Import Tree instance and faces module
from ete2 import Tree, faces, TreeStyle

44 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Loads an example tree
nw = """
(((Dre:0.008339,Dme:0.300613)1.000000:0.596401,
(Cfa:0.640858,Hsa:0.753230)1.000000:0.182035)1.000000:0.106234,
((Dre:0.271621,Cfa:0.046042)1.000000:0.953250,
(Hsa:0.061813,Mms:0.110769)1.000000:0.204419)1.000000:0.973467);
"""
t = Tree(nw)

You can create any random tree containing the same leaf names, and
layout will work equally
#
t = Tree()
Creates a random tree with 8 leaves using a given set of names
t.populate(8, ["Dme", "Dre", "Hsa", "Ptr", "Cfa", "Mms"])

Set the path in which images are located
img_path = "./"
Create faces based on external images
humanFace = faces.ImgFace(img_path+"human.png")
mouseFace = faces.ImgFace(img_path+"mouse.png")
dogFace = faces.ImgFace(img_path+"dog.png")
chimpFace = faces.ImgFace(img_path+"chimp.png")
fishFace = faces.ImgFace(img_path+"fish.png")
flyFace = faces.ImgFace(img_path+"fly.png")

Create a faces ready to read the name attribute of nodes
#nameFace = faces.TextFace(open("text").readline().strip(), fsize=20, fgcolor="#009000")
nameFace = faces.AttrFace("name", fsize=20, fgcolor="#009000")

Create a conversion between leaf names and real names
code2name = {

"Dre":"Drosophila melanogaster",
"Dme":"Danio rerio",
"Hsa":"Homo sapiens",
"Ptr":"Pan troglodytes",
"Mms":"Mus musculus",
"Cfa":"Canis familiaris"
}

Creates a dictionary with the descriptions of each leaf name
code2desc = {

"Dre":"""The zebrafish, also known as Danio rerio,
is a tropical freshwater fish belonging to the
minnow family (Cyprinidae).""",

"Dme":"""True flies are insects of the order Diptera,
possessing a single pair of wings on the
mesothorax and a pair of halteres, derived from
the hind wings, on the metathorax""",

"Hsa":"""A human is a member of a species
of bipedal primates in the family Hominidae.""",

"Ptr":"""Chimpanzee, sometimes colloquially
chimp, is the common name for the
two extant species of ape in the genus Pan.""",

"Mms":"""A mouse is a small mammal belonging to the
order of rodents.""",

"Cfa": """The dog (Canis lupus familiaris) is a

3.2. The Programmable Tree Drawing Engine 45

Tutorial: Environment for Tree Exploration, Release 2.1 beta

domesticated subspecies of the Gray Wolf,
a member of the Canidae family of the
orderCarnivora."""

}

Creates my own layout function. I will use all previously created
faces and will set different node styles depending on the type of
node.
def mylayout(node):

If node is a leaf, add the nodes name and a its scientific
name
if node.is_leaf():

Add an static face that handles the node name
faces.add_face_to_node(nameFace, node, column=0)
We can also create faces on the fly
longNameFace = faces.TextFace(code2name[node.name])
faces.add_face_to_node(longNameFace, node, column=0)

text faces support multiline. We add a text face
with the whole description of each leaf.
descFace = faces.TextFace(code2desc[node.name], fsize=10)
descFace.margin_top = 10
descFace.margin_bottom = 10
descFace.border.margin = 1

Note that this faces is added in "aligned" mode
faces.add_face_to_node(descFace, node, column=0, aligned=True)

Sets the style of leaf nodes
node.img_style["size"] = 12
node.img_style["shape"] = "circle"

#If node is an internal node
else:

Sets the style of internal nodes
node.img_style["size"] = 6
node.img_style["shape"] = "circle"
node.img_style["fgcolor"] = "#000000"

If an internal node contains more than 4 leaves, add the
images of the represented species sorted in columns of 2
images max.
if len(node)>=4:

col = 0
for i, name in enumerate(set(node.get_leaf_names())):

if i>0 and i%2 == 0:
col += 1

Add the corresponding face to the node
if name.startswith("Dme"):

faces.add_face_to_node(flyFace, node, column=col)
elif name.startswith("Dre"):

faces.add_face_to_node(fishFace, node, column=col)
elif name.startswith("Mms"):

faces.add_face_to_node(mouseFace, node, column=col)
elif name.startswith("Ptr"):

faces.add_face_to_node(chimpFace, node, column=col)
elif name.startswith("Hsa"):

faces.add_face_to_node(humanFace, node, column=col)

46 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

elif name.startswith("Cfa"):
faces.add_face_to_node(dogFace, node, column=col)

Modifies this node’s style
node.img_style["size"] = 16
node.img_style["shape"] = "sphere"
node.img_style["fgcolor"] = "#AA0000"

If leaf is "Hsa" (homo sapiens), highlight it using a
different background.
if node.is_leaf() and node.name.startswith("Hsa"):

node.img_style["bgcolor"] = "#9db0cf"

And, finally, Visualize the tree using my own layout function
ts = TreeStyle()
ts.layout_fn = mylayout
t.render("img_faces.png", w=600, tree_style = ts)

Bubble tree maps

import random
from ete2 import Tree, TreeStyle, NodeStyle, faces, AttrFace, CircleFace

def layout(node):
if node.is_leaf():

Add node name to laef nodes
N = AttrFace("name", fsize=14, fgcolor="black")
faces.add_face_to_node(N, node, 0)

if "weight" in node.features:
Creates a sphere face whose size is proportional to node’s
feature "weight"
C = CircleFace(radius=node.weight, color="RoyalBlue", style="sphere")
Let’s make the sphere transparent
C.opacity = 0.3
And place as a float face over the tree
faces.add_face_to_node(C, node, 0, position="float")

Random tree
t = Tree()
t.populate(20, random_branches=True)

Some random features in all nodes

3.2. The Programmable Tree Drawing Engine 47

Tutorial: Environment for Tree Exploration, Release 2.1 beta

for n in t.traverse():
n.add_features(weight=random.randint(0, 50))

Create an empty TreeStyle
ts = TreeStyle()

Set our custom layout function
ts.layout_fn = layout

Draw a tree
ts.mode = "c"

We will add node names manually
ts.show_leaf_name = False
Show branch data
ts.show_branch_length = True
ts.show_branch_support = True

t.render("bubble_map.png", w=600, dpi=300, tree_style=ts)
#t.show(tree_style=ts)

Trees within trees

import random
from ete2 import Tree, TreeStyle, NodeStyle, faces, AttrFace, TreeFace

small_ts = TreeStyle()
small_ts.tree_width = 100
small_ts.show_leaf_name = True

def layout(node):
if node.is_leaf():

Add node name to laef nodes
N = AttrFace("name", fsize=14, fgcolor="black")
faces.add_face_to_node(N, node, 0)

t = Tree()
t.populate(10)

T = TreeFace(t, small_ts)
Let’s make the sphere transparent
T.opacity = 0.8

48 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

And place as a float face over the tree
faces.add_face_to_node(T, node, 1, position="aligned")

Random tree
t = Tree()
t.populate(20, random_branches=True)

Some random features in all nodes
for n in t.traverse():

n.add_features(weight=random.randint(0, 50))

Create an empty TreeStyle
ts = TreeStyle()

Set our custom layout function
ts.layout_fn = layout

Draw a tree
ts.mode = "c"

We will add node names manually
ts.show_leaf_name = False
Show branch data
ts.show_branch_length = True
ts.show_branch_support = True

t.render("tree_faces.png", w=600, dpi=300, tree_style=ts)
t.show(tree_style=ts)

Creating your custom interactive Item faces

Note that item faces shown in this image are not static. When the tree is view using the tree.show()
method, you can interact with items.

We will need to create Qt4 items
from PyQt4 import QtCore
from PyQt4.QtGui import QGraphicsRectItem, QGraphicsSimpleTextItem, \

QGraphicsEllipseItem, QColor, QPen, QBrush

from ete2 import Tree, faces, TreeStyle, NodeStyle

To play with random colors
import colorsys
import random

3.2. The Programmable Tree Drawing Engine 49

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class InteractiveItem(QGraphicsRectItem):
def __init__(self, *arg, **karg):

QGraphicsRectItem.__init__(self, *arg, **karg)
self.node = None
self.label = None
self.setCursor(QtCore.Qt.PointingHandCursor)
self.setAcceptsHoverEvents(True)

def hoverEnterEvent (self, e):
There are many ways of adding interactive elements. With the
following code, I show/hide a text item over my custom
DynamicItemFace
if not self.label:

self.label = QGraphicsRectItem()
self.label.setParentItem(self)
This is to ensure that the label is rendered over the
rest of item children (default ZValue for items is 0)
self.label.setZValue(1)
self.label.setBrush(QBrush(QColor("white")))
self.label.text = QGraphicsSimpleTextItem()
self.label.text.setParentItem(self.label)

self.label.text.setText(self.node.name)
self.label.setRect(self.label.text.boundingRect())
self.label.setVisible(True)

def hoverLeaveEvent(self, e):
if self.label:

self.label.setVisible(False)

def random_color(h=None):
"""Generates a random color in RGB format."""
if not h:

h = random.random()
s = 0.5
l = 0.5
return _hls2hex(h, l, s)

def _hls2hex(h, l, s):
return ’#%02x%02x%02x’ %tuple(map(lambda x: int(x*255),

colorsys.hls_to_rgb(h, l, s)))

def ugly_name_face(node, *args, **kargs):
""" This is my item generator. It must receive a node object, and
returns a Qt4 graphics item that can be used as a node face.
"""

receive an arbitrary number of arguments, in this case width and
height of the faces
width = args[0][0]
height = args[0][1]

Creates a main master Item that will contain all other elements
Items can be standard QGraphicsItem
masterItem = QGraphicsRectItem(0, 0, width, height)

Or your custom Items, in which you can re-implement interactive

50 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

functions, etc. Check QGraphicsItem doc for details.
masterItem = InteractiveItem(0, 0, width, height)

Keep a link within the item to access node info
masterItem.node = node

I dont want a border around the masterItem
masterItem.setPen(QPen(QtCore.Qt.NoPen))

Add ellipse around text
ellipse = QGraphicsEllipseItem(masterItem.rect())
ellipse.setParentItem(masterItem)
Change ellipse color
ellipse.setBrush(QBrush(QColor(random_color())))

Add node name within the ellipse
text = QGraphicsSimpleTextItem(node.name)
text.setParentItem(ellipse)
text.setPen(QPen(QPen(QColor("white"))))

Center text according to masterItem size
tw = text.boundingRect().width()
th = text.boundingRect().height()
center = masterItem.boundingRect().center()
text.setPos(center.x()-tw/2, center.y()-th/2)

return masterItem

def master_ly(node):
if node.is_leaf():

Create an ItemFAce. First argument must be the pointer to
the constructor function that returns a QGraphicsItem. It
will be used to draw the Face. Next arguments are arbitrary,
and they will be forwarded to the constructor Face function.
F = faces.DynamicItemFace(ugly_name_face, 100, 50)
faces.add_face_to_node(F, node, 0, position="aligned")

t = Tree()
t.populate(8, reuse_names=False)

ts = TreeStyle()
ts.layout_fn = master_ly
ts.title.add_face(faces.TextFace("Drawing your own Qt Faces", fsize=15), 0)

t.render("item_faces.png", h=400, tree_style=ts)
The interactive features are only available using the GUI
t.show(tree_style=ts)

3.3 Phylogenetic Trees

3.3. Phylogenetic Trees 51

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Contents

• Phylogenetic Trees
– Overview
– Linking Phylogenetic Trees with Multiple Sequence Alignments
– Visualization of phylogenetic trees
– Adding taxonomic information

* Automatic control of species info
* Automatic (and custom) control of the species info
* Manual control of the species info

– Detecting evolutionary events
* Species Overlap (SO) algorithm
* Tree reconciliation algorithm
* A closer look to the evolutionary event object

– Relative dating phylogenetic nodes
* Implementation

– Automatic rooting (outgroup detection)

3.3.1 Overview

Phylogenetic trees are the result of most evolutionary analyses. They represent the evolutionary rela-
tionships among a set of species or, in molecular biology, a set of homologous sequences.

The PhyloTree class is an extension of the base Tree object, providing a appropriate way to deal
with phylogenetic trees. Thus, while leaves are considered to represent species (or sequences from a
given species genome), internal nodes are considered ancestral nodes. A direct consequence of this is,
for instance, that every split in the tree will represent a speciation or duplication event.

3.3.2 Linking Phylogenetic Trees with Multiple Sequence Alignments

PhyloTree instances allow molecular phylogenies to be linked to the Multiple Se-
quence Alignments (MSA). To associate a MSA with a phylogenetic tree you can use the
PhyloNode.link_to_alignment() method. You can use the alg_format argument to
specify its format (See SeqGroup documentation for available formats)

Given that Fasta format are not only applicable for MSA but also for Unaligned Sequences, you may
also associate sequences of different lengths with tree nodes.

from ete2 import PhyloTree
fasta_txt = """
>seqA
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>seqB
MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
>seqC
MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>seqD
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
"""

Load a tree and link it to an alignment.

52 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

t = PhyloTree("(((seqA,seqB),seqC),seqD);")
t.link_to_alignment(alignment=fasta_txt, alg_format="fasta")

The same could be done at the same time the tree is being loaded, by using the alignment and
alg_format arguments of PhyloTree.

Load a tree and link it to an alignment.
t = PhyloTree("(((seqA,seqB),seqC),seqD);", alignment=fasta_txt, alg_format="fasta")

As currently implemented, sequence linking process is not strict, which means that a perfect match
between all node names and sequences names is not required. Thus, if only one match is found between
sequences names within the MSA file and tree node names, only one tree node will contain an associated
sequence. Also, it is important to note that sequence linking is not limited to terminal nodes. If internal
nodes are named, and such names find a match within the provided MSA file, their corresponding
sequences will be also loaded into the tree structure. Once a MSA is linked, sequences will be available
for every tree node through its node.sequence attribute.

from ete2 import PhyloTree
fasta_txt = """
>seqA
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>seqB
MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
>seqC
MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>seqD
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH

"""
iphylip_txt = """
4 76

seqA MAEIPDETIQ QFMALT---H NIAVQYLSEF GDLNEALNSY YASQTDDIKD RREEAHQFMA
seqB MAEIPDATIQ QFMALTNVSH NIAVQY--EF GDLNEALNSY YAYQTDDQKD RREEAHQFMA
seqC MAEIPDATIQ ---ALTNVSH NIAVQYLSEF GDLNEALNSY YASQTDDQPD RREEAHQFMA
seqD MAEAPDETIQ QFMALTNVSH NIAVQYLSEF GDLNEAL--- ---------- -REEAHQ---

LTNVSHQFMA LTNVSH
LTNVSH---- ------
LTNVSH---- ------
-------FMA LTNVSH

"""
Load a tree and link it to an alignment. As usual, ’alignment’ can
be the path to a file or data in text format.
t = PhyloTree("(((seqA,seqB),seqC),seqD);", alignment=fasta_txt, alg_format="fasta")

#We can now access the sequence of every leaf node
print "These are the nodes and its sequences:"
for leaf in t.iter_leaves():

print leaf.name, leaf.sequence
#seqD MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
#seqC MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
#seqA MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
#seqB MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
#
The associated alignment can be changed at any time
t.link_to_alignment(alignment=iphylip_txt, alg_format="iphylip")
Let’s check that sequences have changed
print "These are the nodes and its re-linked sequences:"
for leaf in t.iter_leaves():

3.3. Phylogenetic Trees 53

Tutorial: Environment for Tree Exploration, Release 2.1 beta

print leaf.name, leaf.sequence
#seqD MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAHQ----------FMALTNVSH
#seqC MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAHQFMALTNVSH----------
#seqA MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQFMALTNVSHQFMALTNVSH
#seqB MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAHQFMALTNVSH----------
#
The sequence attribute is considered as node feature, so you can
even include sequences in your extended newick format!
print t.write(features=["sequence"], format=9)
#
#
(((seqA[&&NHX:sequence=MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQF
MALTNVSHQFMALTNVSH],seqB[&&NHX:sequence=MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSY
YAYQTDDQKDRREEAHQFMALTNVSH----------]),seqC[&&NHX:sequence=MAEIPDATIQ---ALTNVSHNIA
VQYLSEFGDLNEALNSYYASQTDDQPDRREEAHQFMALTNVSH----------]),seqD[&&NHX:sequence=MAEAPD
ETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAHQ----------FMALTNVSH]);
#
And yes, you can save this newick text and reload it into a PhyloTree instance.
sametree = PhyloTree(t.write(features=["sequence"]))
print "Recovered tree with sequence features:"
print sametree
#
/-seqA
/--------|
/--------| \-seqB
| |
#---------| \-seqC
|
\-seqD
#
print "seqA sequence:", (t&"seqA").sequence
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQFMALTNVSHQFMALTNVSH

3.3.3 Visualization of phylogenetic trees

PhyloTree instances can benefit from all the features of the programmable drawing engine. However, a
built-in phylogenetic layout is provided for convenience.

All PhyloTree instances are, by default, attached to such layout for tree visualization, thus allowing for
in-place alignment visualization and evolutionary events labeling.

from ete2 import PhyloTree

alg = """
>Dme_001
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEAL--YYASQTDDIKDRREEAH
>Dme_002
MAEIPDATIQQFMALTNVSHNIAVQY--EFGDLNEALNSYYAYQTDDQKDRREEAH
>Cfa_001

54 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>Mms_001
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
>Hsa_001
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>Ptr_002
MAEIPDATIQ-FMALTNVSHNIAVQY--EFGDLNEALNSY--YQTDDQKDRREEAH
>Mmu_002
MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>Hsa_002
MAEAPDETIQQFM-LTNVSHNIAVQYLSEFGDLNEAL--------------REEAH
>Mmu_001
MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>Ptr_001
MAEIPDATIQ-FMALTNVSHNIAVQY--EFGDLNEALNSY--YQTDDQKDRREEAH
>Mmu_001
MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH

"""

Performs a tree reconciliation analysis
gene_tree_nw = ’((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),(Ptr_002,(Hsa_002,Mmu_002))));’
species_tree_nw = "((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"
genetree = PhyloTree(gene_tree_nw)
sptree = PhyloTree(species_tree_nw)
recon_tree, events = genetree.reconcile(sptree)
recon_tree.link_to_alignment(alg)

Visualize the reconciled tree
recon_tree.render("phylotree.png", w=750)

3.3.4 Adding taxonomic information

PhyloTree instances allow to deal with leaf names and species names separately. This is useful
when working with molecular phylogenies, in which node names usually represent sequence identifiers.
Species names will be stored in the PhyloNode.species attribute of each leaf node. The method
PhyloNode.get_species() can be used obtain the set of species names found under a given
internal node (speciation or duplication event). Often, sequence names do contain species information
as a part of the name, and ETE can parse this information automatically.

There are three ways to establish the species of the different tree nodes:

• Default: The three first letters of node’s name represent the species

• The species code of each node is dynamically created based on node’s name

• The species code of each node is manually set.

Automatic control of species info

from ete2 import PhyloTree
Reads a phylogenetic tree (using default species name encoding)
t = PhyloTree("(((Hsa_001,Ptr_001),(Cfa_001,Mms_001)),(Dme_001,Dme_002));")
/-Hsa_001
/--------|
| \-Ptr_001

3.3. Phylogenetic Trees 55

Tutorial: Environment for Tree Exploration, Release 2.1 beta

/--------|
| | /-Cfa_001
| \--------|
#---------| \-Mms_001
|
| /-Dme_001
\--------|
\-Dme_002
#
Prints current leaf names and species codes
print "Deafult mode:"
for n in t.get_leaves():

print "node:", n.name, "Species name:", n.species
node: Dme_001 Species name: Dme
node: Dme_002 Species name: Dme
node: Hsa_001 Species name: Hsa
node: Ptr_001 Species name: Ptr
node: Cfa_001 Species name: Cfa
node: Mms_001 Species name: Mms

Automatic (and custom) control of the species info

The default behavior can be changed by using the PhyloNode.set_species_naming_function()
method or by using the sp_naming_function argument of the PhyloTree class.
Note that, using the sp_naming_function argument, the whole tree structure will
be initialized to use the provided parsing function to obtain species name information.
PhyloNode.set_species_naming_function() (present in all tree nodes) can be used
to change the behavior in a previously loaded tree, or to set different parsing function to different parts
of the tree.

from ete2 import PhyloTree
Reads a phylogenetic tree
t = PhyloTree("(((Hsa_001,Ptr_001),(Cfa_001,Mms_001)),(Dme_001,Dme_002));")

Let’s use our own leaf name parsing function to obtain species
names. All we need to do is create a python function that takes
node’s name as argument and return its corresponding species name.
def get_species_name(node_name_string):

Species code is the first part of leaf name (separated by an
underscore character)
spcode = node_name_string.split("_")[0]
We could even translate the code to complete names
code2name = {

"Dme":"Drosophila melanogaster",
"Hsa":"Homo sapiens",
"Ptr":"Pan troglodytes",
"Mms":"Mus musculus",
"Cfa":"Canis familiaris"
}

return code2name[spcode]

Now, let’s ask the tree to use our custom species naming function
t.set_species_naming_function(get_species_name)
print "Custom mode:"
for n in t.get_leaves():

56 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

print "node:", n.name, "Species name:", n.species

node: Dme_001 Species name: Drosophila melanogaster
node: Dme_002 Species name: Drosophila melanogaster
node: Hsa_001 Species name: Homo sapiens
node: Ptr_001 Species name: Pan troglodytes
node: Cfa_001 Species name: Canis familiaris
node: Mms_001 Species name: Mus musculus

Manual control of the species info

To disable the automatic generation of species names based on node names, a None value can be passed
to the PhyloNode.set_species_naming_function() function. From then on, species at-
tribute will not be automatically updated based on the name of nodes and it could be controlled manu-
ally.

from ete2 import PhyloTree
Reads a phylogenetic tree
t = PhyloTree("(((Hsa_001,Ptr_001),(Cfa_001,Mms_001)),(Dme_001,Dme_002));")

Of course, you can disable the automatic generation of species
names. To do so, you can set the species naming function to
None. This is useful to set the species names manually or for
reading them from a newick file. Other wise, species attribute would
be overwriten
mynewick = """
(((Hsa_001[&&NHX:species=Human],Ptr_001[&&NHX:species=Chimp]),
(Cfa_001[&&NHX:species=Dog],Mms_001[&&NHX:species=Mouse])),
(Dme_001[&&NHX:species=Fly],Dme_002[&&NHX:species=Fly]));
"""
t = PhyloTree(mynewick, sp_naming_function=None)
print "Disabled mode (manual set)"
for n in t.get_leaves():

print "node:", n.name, "Species name:", n.species

node: Dme_001 Species name: Fly
node: Dme_002 Species name: Fly
node: Hsa_001 Species name: Human
node: Ptr_001 Species name: Chimp
node: Cfa_001 Species name: Dog
node: Mms_001 Species name: Mouse

Full Example: Species aware trees.

3.3.5 Detecting evolutionary events

There are several ways to automatically detect duplication and speciation nodes. ETE provides two
methodologies: One implements the algorithm described in Huerta-Cepas (2007) and is based on the
species overlap (SO) between partitions and thus does not depend on the availability of a species tree.
The second, which requires the comparison between the gene tree and a previously defined species tree,
implements a strict tree reconciliation algorithm (Page and Charleston, 1997). By detecting evolutionary
events, orthology and paralogy relationships among sequences can also be inferred. Find a comparison
of both methods in Marcet-Houben and Gabaldon (2009).

3.3. Phylogenetic Trees 57

http://genomebiology.com/2007/8/6/R109
http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0004357

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Species Overlap (SO) algorithm

In order to apply the SO algorithm, you can use the PhyloNode.get_descendant_evol_events()
method (it will detect all evolutionary events under the current node) or the
PhyloNode.get_my_evol_events() method (it will detect only the evolutionary events
in which current node, a leaf, is involved).

By default the species overlap score (SOS) threshold is set to 0.0, which means that a single species in
common between two node branches will rise a duplication event. This has been shown to perform the
best with real data, however you can adjust the threshold using the sos_thr argument present in both
methods.

from ete2 import PhyloTree
Loads an example tree
nw = """
((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),
(Ptr_002,(Hsa_002,Mmu_002))));
"""
t = PhyloTree(nw)
print t
/-Dme_001
/--------|
| \-Dme_002
|
| /-Cfa_001
| /--------|
#---------| | \-Mms_001
| /--------|
| | | /-Hsa_001
| | | /--------|
| | \--------| \-Ptr_001
\--------| |
| \-Mmu_001
|
| /-Ptr_002
\--------|
| /-Hsa_002
\--------|
\-Mmu_002
#
To obtain all the evolutionary events involving a given leaf node we
use get_my_evol_events method
matches = t.search_nodes(name="Hsa_001")
human_seq = matches[0]
Obtains its evolutionary events
events = human_seq.get_my_evol_events()
Print its orthology and paralogy relationships
print "Events detected that involve Hsa_001:"
for ev in events:

if ev.etype == "S":
print ’ ORTHOLOGY RELATIONSHIP:’, ’,’.join(ev.in_seqs), "<====>", ’,’.join(ev.out_seqs)

elif ev.etype == "D":
print ’ PARALOGY RELATIONSHIP:’, ’,’.join(ev.in_seqs), "<====>", ’,’.join(ev.out_seqs)

Alternatively, you can scan the whole tree topology
events = t.get_descendant_evol_events()
Print its orthology and paralogy relationships

58 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

print "Events detected from the root of the tree"
for ev in events:

if ev.etype == "S":
print ’ ORTHOLOGY RELATIONSHIP:’, ’,’.join(ev.in_seqs), "<====>", ’,’.join(ev.out_seqs)

elif ev.etype == "D":
print ’ PARALOGY RELATIONSHIP:’, ’,’.join(ev.in_seqs), "<====>", ’,’.join(ev.out_seqs)

If we are only interested in the orthology and paralogy relationship
among a given set of species, we can filter the list of sequences
#
fseqs is a function that, given a list of sequences, returns only
those from human and mouse
fseqs = lambda slist: [s for s in slist if s.startswith("Hsa") or s.startswith("Mms")]
print "Paralogy relationships among human and mouse"
for ev in events:

if ev.etype == "D":
Prints paralogy relationships considering only human and
mouse. Some duplication event may not involve such species,
so they will be empty
print ’ PARALOGY RELATIONSHIP:’, \

’,’.join(fseqs(ev.in_seqs)), \
"<====>",\
’,’.join(fseqs(ev.out_seqs))

Note that besides the list of events returned, the detection
algorithm has labeled the tree nodes according with the
predictions. We can use such lables as normal node features.
dups = t.search_nodes(evoltype="D") # Return all duplication nodes

Tree reconciliation algorithm

Tree reconciliation algorithm uses a predefined species tree to infer all the necessary genes losses that
explain a given gene tree topology. Consequently, duplication and separation nodes will strictly follow
the species tree topology.

To perform a tree reconciliation analysis over a given node in a molecular phylogeny you can use the
PhyloNode.reconcile() method, which requires a species PhyloTree as its first argument.
Leaf node names in the the species are expected to be the same species codes in the gene tree (see
taxonomic_info). All species codes present in the gene tree should appear in the species tree.

As a result, the PhyloNode.reconcile() method will label the original gene tree nodes as du-
plication or speciation, will return the list of inferred events, and will return a new reconcilied tree
(PhyloTree instance), in which inferred gene losses are present and labeled.

from ete2 import PhyloTree

Loads a gene tree and its corresponding species tree. Note that
species names in sptree are the 3 firs letters of leaf nodes in
genetree.
gene_tree_nw = ’((Dme_001,Dme_002),(((Cfa_001,Mms_001),((Hsa_001,Ptr_001),Mmu_001)),(Ptr_002,(Hsa_002,Mmu_002))));’
species_tree_nw = "((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"
genetree = PhyloTree(gene_tree_nw)
sptree = PhyloTree(species_tree_nw)
print genetree
/-Dme_001
/--------|

3.3. Phylogenetic Trees 59

Tutorial: Environment for Tree Exploration, Release 2.1 beta

| \-Dme_002
|
| /-Cfa_001
| /--------|
#---------| | \-Mms_001
| /--------|
| | | /-Hsa_001
| | | /--------|
| | \--------| \-Ptr_001
\--------| |
| \-Mmu_001
|
| /-Ptr_002
\--------|
| /-Hsa_002
\--------|
\-Mmu_002
#
Let’s reconcile our genetree with the species tree
recon_tree, events = genetree.reconcile(sptree)
a new "reconcilied tree" is returned. As well as the list of
inferred events.
print "Orthology and Paralogy relationships:"
for ev in events:

if ev.etype == "S":
print ’ORTHOLOGY RELATIONSHIP:’, ’,’.join(ev.inparalogs), "<====>", ’,’.join(ev.orthologs)

elif ev.etype == "D":
print ’PARALOGY RELATIONSHIP:’, ’,’.join(ev.inparalogs), "<====>", ’,’.join(ev.outparalogs)

And we can explore the resulting reconciled tree
print recon_tree
You will notice how the reconcilied tree is the same as the gene
tree with some added branches. They are inferred gene losses.
#
#
/-Dme_001
/--------|
| \-Dme_002
|
| /-Cfa_001
| /--------|
| | \-Mms_001
#---------| /--------|
| | | /-Hsa_001
| | | /--------|
| | \--------| \-Ptr_001
| | |
| | \-Mmu_001
\--------|
| /-Mms
| /--------|
| | \-Cfa
| |
| | /-Hsa
\--------| /--------|
| /--------| \-Ptr_002
| | |
| | \-Mmu

60 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

\--------|
| /-Ptr
| /--------|
\--------| \-Hsa_002
|
\-Mmu_002
#
And we can visualize the trees using the default phylogeny
visualization layout
genetree.show()
recon_tree.show()

A closer look to the evolutionary event object

Both methods, species overlap and tree reconciliation, can be used to label each tree node as a duplication
or speciation event. Thus, the PhyloNode.evoltype attribute of every node will be set to one of
the following states: D (Duplication), S (Speciation) or L gene loss.

Additionally, a list of all the detected events is returned. Each event is a python object of type
phylo.EvolEvent, containing some basic information about each event (etype, in_seqs,
out_seqs, node):

If an event represents a duplication, in_seqs are all paralogous to out_seqs. Similarly, if an event
represents a speciation, in_seqs are all orthologous to out_seqs.

3.3.6 Relative dating phylogenetic nodes

In molecular phylogeny, nodes can be interpreted as evolutionary events. Therefore, they represent
duplication or speciation events. In the case of gene duplication events, nodes can also be assigned to
a certain point in a relative temporal scale. In other words, you can obtain a relative dating of all the
duplication events detected.

Although absolute dating is always preferred and more precise, topological dating provides a faster
approach to compare the relative age of paralogous sequences (read this for a comparison with other
methods, such as the use of synonymous substitution rates as a proxy to the divergence time).

Some applications of topological dating can be found in Huerta-Cepas et al, 2007 or, more recently, in
Huerta-Cepas et al, 2011 or Kalinka et al, 2001.

Implementation

The aim of relative dating is to establish a gradient of ages among sequences. For this, a reference
species needs to be fixed, so the gradient of ages will be referred to that referent point.

Thus, if our reference species is Human, we could establish the following gradient of species:

• (1) Human -> (2) Other Primates -> (3) Mammals -> (4) Vertebrates

So, nodes in a tree can be assigned to one of the above categories depending on the sequences grouped.
For instance:

• A node with only human sequences will be mapped to (1).

• A node with human and orangutan sequences will be mapped to (2)

3.3. Phylogenetic Trees 61

http://bioinformatics.oxfordjournals.org/content/27/1/38.long
http://genomebiology.com/2007/8/6/r109
http://bib.oxfordjournals.org/content/12/5/442.abstract
http://www.nature.com/nature/journal/v468/n7325/full/nature09634.html

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• A node with human a fish sequences will be mapped to (4)

This simple calculation can be done automatically by encoding the gradient of species ages as Python
dictionary.

relative_dist = {
"human": 0, # human
"chimp": 1, # Primates non human
"rat": 2, # Mammals non primates
"mouse": 2, # Mammals non primates
"fish": 3 # Vertebrates non mammals
}

Once done, ETE can check the relative age of any tree node. The PhyloNode.get_age() method
can be used to that purpose.

For example, let’s consider the following gene tree:

/-humanA
/---|
| \-chimpA
/Dup1
| | /-humanB
/---| \---|
| | \-chimpB
/---| |
| | \-mouseA
| |
| \-fish
#-Dup3
| /-humanC
| /---|
| /---| \-chimpC
| | |
\Dup2 \-humanD
|
| /-ratC
\---|
\-mouseC

the expected node dating would be:

• Dup1 will be assigned to primates (most distant species is chimp).
Dup1.get_age(relative_distances) will return 1

• Dup2 will be assigned to mammals [2] (most distant species are rat and mouse).
Dup2.get_age(relative_distances) will return 2

• Dup3 will be assigned to mammals [3] (most distant species is fish).
Dup3.get_age(relative_distances) will return 3

from ete2 import PhyloTree
Creates a gene phylogeny with several duplication events at
different levels. Note that we are using the default method for
detecting the species code of leaves (three first lettes in the node
name are considered the species code).
nw = """
((Dme_001,Dme_002),(((Cfa_001,Mms_001),((((Hsa_001,Hsa_003),Ptr_001)
,Mmu_001),((Hsa_004,Ptr_004),Mmu_004))),(Ptr_002,(Hsa_002,Mmu_002))));

62 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

"""
t = PhyloTree(nw)
print "Original tree:",
print t
#
/-Dme_001
/--------|
| \-Dme_002
|
| /-Cfa_001
| /--------|
| | \-Mms_001
| |
#--| | /-Hsa_001
| | /--------|
| /--------| /--------| \-Hsa_003
| | | | |
| | | /--------| \-Ptr_001
| | | | |
| | | | \-Mmu_001
| | \--------|
\--------| | /-Hsa_004
| | /--------|
| \--------| \-Ptr_004
| |
| \-Mmu_004
|
| /-Ptr_002
\--------|
| /-Hsa_002
\--------|
\-Mmu_002
Create a dictionary with relative ages for the species present in
the phylogenetic tree. Note that ages are only relative numbers to
define which species are older, and that different species can
belong to the same age.
species2age = {

’Hsa’: 1, # Homo sapiens (Hominids)
’Ptr’: 2, # P. troglodytes (primates)
’Mmu’: 2, # Macaca mulata (primates)
’Mms’: 3, # Mus musculus (mammals)
’Cfa’: 3, # Canis familiaris (mammals)
’Dme’: 4 # Drosophila melanogaster (metazoa)

}
We can translate each number to its correspondig taxonomic number
age2name = {

1:"hominids",
2:"primates",
3:"mammals",
4:"metazoa"

}
event1= t.get_common_ancestor("Hsa_001", "Hsa_004")
event2=t.get_common_ancestor("Hsa_001", "Hsa_002")
print
print "The duplication event leading to the human sequences Hsa_001 and "+\

"Hsa_004 is dated at: ", age2name[event1.get_age(species2age)]
print "The duplication event leading to the human sequences Hsa_001 and "+\

3.3. Phylogenetic Trees 63

Tutorial: Environment for Tree Exploration, Release 2.1 beta

"Hsa_002 is dated at: ", age2name[event2.get_age(species2age)]
The duplication event leading to the human sequences Hsa_001 and Hsa_004
is dated at: primates
#
The duplication event leading to the human sequences Hsa_001 and Hsa_002
is dated at: mammals

Warning: Note that relative distances will vary depending on your reference species.

3.3.7 Automatic rooting (outgroup detection)

Two methods are provided to assist in the automatic rooting of phylogenetic trees. Since tree nodes con-
tain relative age information (based on the species code autodetection), the same relative age dictionaries
can be used to detect the farthest and oldest node in a tree to given sequences.

PhyloNode.get_farthest_oldest_node() and PhyloNode.get_farthest_oldest_leaf()
can be used for that purpose.

3.4 Clustering Trees

Contents

• Clustering Trees
– Overview
– Loading ClusterTrees
– Visualization of matrix associated Trees
– Cluster Validation Example

3.4.1 Overview

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that obser-
vations in the same cluster are similar in some sense. Clustering is a method of unsupervised learning,
and a common technique for statistical data analysis used in many fields, including machine learning,
data mining, pattern recognition, image analysis and bioinformatics. Hierarchical clustering creates a
hierarchy of clusters which may be represented in a tree structure called a dendrogram. The root of
the tree consists of a single cluster containing all observations, and the leaves correspond to individual
observations. [The Wikipedia project Jun-2009].

ETE provides special ClusterNode (alias ClusterTree) instances to deal with trees associated to a
clustering analysis. The basic difference between Tree and ClusterTree is that leaf nodes in a
cluster-tree are linked to numerical profiles. Such profiles are expected to represent the data used to
generate the clustering tree. In other words, trees are bound to numerical arrays.

/-A
---|
\-B
#
#Names col1 col2 col3

64 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

A 1.1 0.1 1.33
B 2.0 1.0 2.0

Based on this, ClusterTree instances provide several several clustering validation techniques that
help in the analysis of cluster quality. Currently, inter and intra-cluster distances, cluster std.deviation,
Silhouette analysis and Dunn indexes are supported. In addition, ClusterTree nodes can be visualized
using the ProfileFace face type, which can represent cluster profiles in different ways, such as line
plots, heatmaps or bar plots.

Although this type of trees are intended to be used for clustering results, any tree that can be linked to
a table (i.e. phylogenetic profiles) could be loaded using this data type, thus taking advantage of the
profile visualization modes, etc.

3.4.2 Loading ClusterTrees

A ClusterTree can be linked to a numerical matrix by using the text_array argument.

from ete2 import ClusterTree

Example of a minimalistic numerical matrix. It is encoded as a text
string for convenience, but it usally be loaded from a text file.
matrix = """
#Names\tcol1\tcol2\tcol3\tcol4\tcol5\tcol6\tcol7
A\t-1.23\t-0.81\t1.79\t0.78\t-0.42\t-0.69\t0.58
B\t-1.76\t-0.94\t1.16\t0.36\t0.41\t-0.35\t1.12
C\t-2.19\t0.13\t0.65\t-0.51\t0.52\t1.04\t0.36
D\t-1.22\t-0.98\t0.79\t-0.76\t-0.29\t1.54\t0.93
E\t-1.47\t-0.83\t0.85\t0.07\t-0.81\t1.53\t0.65
F\t-1.04\t-1.11\t0.87\t-0.14\t-0.80\t1.74\t0.48
G\t-1.57\t-1.17\t1.29\t0.23\t-0.20\t1.17\t0.26
H\t-1.53\t-1.25\t0.59\t-0.30\t0.32\t1.41\t0.77
"""
print "Example numerical matrix"
print matrix
#Names col1 col2 col3 col4 col5 col6 col7
A -1.23 -0.81 1.79 0.78 -0.42 -0.69 0.58
B -1.76 -0.94 1.16 0.36 0.41 -0.35 1.12
C -2.19 0.13 0.65 -0.51 0.52 1.04 0.36
D -1.22 -0.98 0.79 -0.76 -0.29 1.54 0.93
E -1.47 -0.83 0.85 0.07 -0.81 1.53 0.65
F -1.04 -1.11 0.87 -0.14 -0.80 1.74 0.48
G -1.57 -1.17 1.29 0.23 -0.20 1.17 0.26
H -1.53 -1.25 0.59 -0.30 0.32 1.41 0.77
#
#
We load a tree structure whose leaf nodes correspond to rows in the
numerical matrix. We use the text_array argument to link the tree
with numerical matrix.
t = ClusterTree("(((A,B),(C,(D,E))),(F,(G,H)));", text_array=matrix)

Alternatively, you can re-link the tree (or a sub-part of it) to a new matrix using the
ClusterNode.link_to_arraytable() method.

t = ClusterTree("(((A,B),(C,(D,E))),(F,(G,H)));")
t.children[0].link_to_arraytable(matrix1)
t.children[1].link_to_arraytable(matrix2)

3.4. Clustering Trees 65

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Once the tree is linked to a table of profiles, the following node properties will be avail-
able: PhyloNode.profile, PhyloNode.deviation, PhyloNode.silhoutte,
PhyloNode.intercluster_dist, PhyloNode.intracluster_dist,
PhyloNode.dunn.

Similarly, the following methods are provide for convenience
PhyloNode.iter_leaf_profiles(), PhyloNode.get_leaf_profiles(),
PhyloNode.get_silhouette() and PhyloNode.get_dunn() methods.

3.4.3 Visualization of matrix associated Trees

Clustering or not, any ClusterTree instance, associated to a numerical matrix, can be visualized together
with the graphical representation of its node’s numeric profiles. To this end, the ProfileFace class
is provided by the treeview module. This face type can represent a node’s numeric profile in four
different ways:

Additionally, three basic layouts are provided that use different styles of ProfileFace instances: heatmap,
line_profiles, bar_profiles, cbar_profiles.

Import Tree instance and faces module
from ete2 import ClusterTree

Example of a minimalistic numerical matrix. It is encoded as a text
string for convenience, but it usally be loaded from a text file.
matrix = """
#Names\tcol1\tcol2\tcol3\tcol4\tcol5\tcol6\tcol7
A\t-1.23\t-0.81\t1.79\t0.78\t-0.42\t-0.69\t0.58
B\t-1.76\t-0.94\t1.16\t0.36\t0.41\t-0.35\t1.12
C\t-2.19\t0.13\t0.65\t-0.51\t0.52\t1.04\t0.36
D\t-1.22\t-0.98\t0.79\t-0.76\t-0.29\t1.54\t0.93
E\t-1.47\t-0.83\t0.85\t0.07\t-0.81\t1.53\t0.65
F\t-1.04\t-1.11\t0.87\t-0.14\t-0.80\t1.74\t0.48
G\t-1.57\t-1.17\t1.29\t0.23\t-0.20\t1.17\t0.26
H\t-1.53\t-1.25\t0.59\t-0.30\t0.32\t1.41\t0.77
"""

66 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

print "Example numerical matrix"
print matrix
#Names col1 col2 col3 col4 col5 col6 col7
A -1.23 -0.81 1.79 0.78 -0.42 -0.69 0.58
B -1.76 -0.94 1.16 0.36 0.41 -0.35 1.12
C -2.19 0.13 0.65 -0.51 0.52 1.04 0.36
D -1.22 -0.98 0.79 -0.76 -0.29 1.54 0.93
E -1.47 -0.83 0.85 0.07 -0.81 1.53 0.65
F -1.04 -1.11 0.87 -0.14 -0.80 1.74 0.48
G -1.57 -1.17 1.29 0.23 -0.20 1.17 0.26
H -1.53 -1.25 0.59 -0.30 0.32 1.41 0.77
#
#
We load a tree structure whose leaf nodes correspond to rows in the
numerical matrix. We use the text_array argument to link the tree
with numerical matrix.
t = ClusterTree("(((A,B),(C,(D,E))),(F,(G,H)));", text_array=matrix)
Try the default layout using ProfileFaces
t.show("heatmap")
t.show("cluster_cbars")
t.show("cluster_bars")
t.show("cluster_lines")

3.4.4 Cluster Validation Example

If associated matrix represents the dataset used to produce a given tree, clustering validation values can
be used to assess the quality of partitions. To do so, you will need to set the distance function that was
used to calculate distances among items (leaf nodes). ETE implements three common distance methods
in bioinformatics : euclidean, pearson correlation and spearman correlation distances.

In the following example, a microarray clustering result is visualized and validated using ETE.

Image resulting from a microarray clustering validation analysis. Red bubbles represent a bad silhouette
index (S<0), while green represents good silhouette index (S>0). Size of bubbles is proportional to
the Silhouette index. Internal nodes are drawn with the average expression profile grouped by their
partitions. Leaf node profiles are shown as a heatmap.

from ete2 import ClusterTree, TreeStyle, AttrFace, ProfileFace, TextFace
from ete2.treeview.faces import add_face_to_node

To operate with numbers efficiently
import numpy

PATH = "./"
Loads tree and array
t = ClusterTree(PATH+"diauxic.nw", PATH+"diauxic.array")

nodes are linked to the array table
array = t.arraytable

Calculates some stats on the matrix. Needed to establish the color
gradients.
matrix_dist = [i for r in xrange(len(array.matrix))\

for i in array.matrix[r] if numpy.isfinite(i)]
matrix_max = numpy.max(matrix_dist)
matrix_min = numpy.min(matrix_dist)

3.4. Clustering Trees 67

Tutorial: Environment for Tree Exploration, Release 2.1 beta

68 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

matrix_avg = matrix_min+((matrix_max-matrix_min)/2)

Creates a profile face that will represent node’s profile as a
heatmap
profileFace = ProfileFace(matrix_max, matrix_min, matrix_avg, \

200, 14, "heatmap")
cbarsFace = ProfileFace(matrix_max,matrix_min,matrix_avg,200,70,"cbars")
nameFace = AttrFace("name", fsize=8)
Creates my own layout function that uses previous faces
def mylayout(node):

If node is a leaf
if node.is_leaf():

And a line profile
add_face_to_node(profileFace, node, 0, aligned=True)
node.img_style["size"]=0
add_face_to_node(nameFace, node, 1, aligned=True)

If node is internal
else:

If silhouette is good, creates a green bubble
if node.silhouette>0:

validationFace = TextFace("Silh=%0.2f" %node.silhouette,
"Verdana", 10, "#056600")

node.img_style["fgcolor"]="#056600"
Otherwise, use red bubbles
else:

validationFace = TextFace("Silh=%0.2f" %node.silhouette,
"Verdana", 10, "#940000")

node.img_style["fgcolor"]="#940000"

Sets node size proportional to the silhouette value.
node.img_style["shape"]="sphere"
if node.silhouette<=1 and node.silhouette>=-1:

node.img_style["size"]= 15+int((abs(node.silhouette)*10)**2)

If node is very internal, draw also a bar diagram
with the average expression of the partition
add_face_to_node(validationFace, node, 0)
if len(node)>100:

add_face_to_node(cbarsFace, node, 1)

Use my layout to visualize the tree
ts = TreeStyle()
ts.layout_fn = mylayout
t.show(tree_style=ts)

3.5 The PhylomeDB API

PhylomeDB is a public database for complete collections of gene phylogenies (phylomes). It allows
users to interactively explore the evolutionary history of genes through the visualization of phylogenetic
trees and multiple sequence alignments. Moreover, phylomeDB provides genome-wide orthology and
paralogy predictions which are based on the analysis of the phylogenetic trees. The automated pipeline
used to reconstruct trees aims at providing a high-quality phylogenetic analysis of different genomes ,
including Maximum Likelihood or Bayesian tree inference, alignment trimming and evolutionary model

3.5. The PhylomeDB API 69

Tutorial: Environment for Tree Exploration, Release 2.1 beta

testing. PhylomeDB includes also a public download section with the complete set of trees, alignments
and orthology predictions.

ETE’s phylomeDB extension provides an access API to the main PhylomeDB database, thus allowing
to search for and fetch precomputed gene phylogenies.

3.5.1 Basis of the phylomeDB API usage

In order to explore the database resources, you have to create a connector to the database, which will be
used to query it. To do so, you must use the PhylomeDBConnector class and specify the parameters of
the DB connection.

The PhylomeDBConnector constructor will return a pointer to the DB that you can use to per-
form queries. All methods starting by get_ can be used to retrieve information from the database.
A complete list of available methods can be found in the ETE’s programming guide (available at
http://ete.cgenomics.orgete.cgenomics.org) or explored by executing dir(PhylomeDBConnector) in a
python console.

3.5.2 PhylomeDB structure

A phylome includes thousands of gene trees associated to the different genes/proteins of a given species.
Thus, for example, the human phylome includes more than 20.000 phylogenetic trees; on per human
gene. Moreover, the same gene may be associated to different trees within the same phylome differing
only in the evolutionary model that assumed to reconstruct the phylogeny.

Given that each phylogenetic tree was reconstructed using a a single gene as the seed sequence to find
homologous in other species, the tree takes the name from the seed sequence.

You can obtain a full list of phylomes through the get_phylomes() and a full list of seed sequence in
a phylome using the get_seed_ids() method. Phylogenetic trees within a given phylome were recon-
structed in a context of a fixed set of species. In order to obtain the list of proteomes included in a
phylome, use the** get_proteomes_in_phylome()** method. PhylomeDB uses its own sequence iden-
tifiers, but you can use the search_id() to find a match from an external sequence ID.

Each phylome is the collection of all trees associated to a given species. Thus, the human phylome will
contain thousands of phylogenetic trees. Each gene/protein in a phylome may be associated to different
trees, testing, for example, different evolutionary models. Thus when you query the database for a gene
phylogeny you have to specify from which phylome and which specific tree. Alternatively, you can
query for the best tree in a given phylomes, which will basically return the best likelihood tree for the
queried gene/protein. The get_tree and get_best_tree methods carry out such operations. When trees
are fetched from the phylomeDB database, the are automatically converted to the PhyloTree class, thus
allowing to operate with them as phylogenetic trees.

3.5.3 Going phylogenomic scale

Just to show you how to explore a complete phylome:

3.6 Phylogenetic XML standards

New in version 2.1. From version 2.1, ETE provides support for NeXML and PhyloXML phylogenetic
XML standards, both reading and writing. These standards allow to encode complex phylogenetic data,

70 Chapter 3. The ETE tutorial

http://ete.cgenomics.orgete.cgenomics.org
http://nexml.org/
http://phyloxml.org/

Tutorial: Environment for Tree Exploration, Release 2.1 beta

and therefore they are not limited to trees. Although ETE is mainly focused on allowing transparent
interaction with trees, it also provides basic I/O methods to data of different type.

Essentially, NexML and PhyloXML files are intended to encode collections of phylogenetic data. Such
information can be converted to a collection Python objects sorted in a hierarchical way. A spe-
cific Python class exists for every element encoded documented by the NeXML and PhyloXML for-
mats. This is possible thanks to the the general purpose Python drivers available for both formats
(http://ete.cgenomics.org/phyloxml-and-nexml-python-parsers). ETE will use such drivers to access
XML data, and it will also convert tree data into PhyloTree objects. In practice, conversions will occur
transparently. NeXML and PhyloXML files are loaded using their specific root classes, provided by
the main ETE module, and all the information will become available as a collection of Python objects
internally sorted according to the original XML hierarchy. New in version 2.1.

3.6.1 NeXML

NeXML(http://nexml.org) is an exchange standard for representing phyloinformatic data inspired by the
commonly used NEXUS format, but more robust and easier to process.

Reading NeXML projects

Nexml projects are handled through the Nexml base class. To load a NexML file, the
Nexml.build_from_file() method can be used.

from ete2 import Nexml

nexml_prj = Nexml()
nexml_prj.build_from_file("/path/to/nexml_example.xml")

Note that the ETE parser will read the provided XML file and convert all elements into python instances,
which will be hierarchically connected to the Nexml root instance.

Every NeXML XML element has its own python class. Content and attributes can be handled through
the “set_” and “get_” methods existing in all objects. Nexml classes can be imported from the
ete2.nexml module.

from ete2 import Nexml, nexml
nexml_prj = Nexml()
nexml_meta = nexml.LiteralMeta(datatype="double", property="branch_support", content=1.0)
nexml_prj.add_meta(nexml_meta)
nexml_prj.export()

Will produce:
#
<Nexml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="Nexml">
<meta datatype="double" content="1.0" property="branch_support" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="LiteralMeta"/>
</Nexml>

NeXML trees

NeXML tree elements are automatically converted into PhyloTree instances, containing all ETE func-
tionality (traversing, drawing, etc) plus normal NeXML attributes.

3.6. Phylogenetic XML standards 71

http://ete.cgenomics.org/phyloxml-and-nexml-python-parsers
http://nexml.org

Tutorial: Environment for Tree Exploration, Release 2.1 beta

In the Nexml standard, trees are represented as plain lists of nodes and edges. ETE will convert such
lists into tree topologies, in which every node will contain a nexml_node and nexml_edge at-
tribute. In addition, each tree node will have a nexml_tree attribute (i.e. NEXML->FloatTree)
, which can be used to set the nexml properties of the subtree represented by each node. Note also
that node.dist and node.name features will be linked to node.nexml_edge.length and
node.nexml_node.label, respectively.

from ete2 import Nexml
Create an empty Nexml project
nexml_project = Nexml()

Load content from NeXML file
nexml_project.build_from_file("trees.xml")

All XML elements are within the project instance.
exist in each element to access their attributes.
print "Loaded Taxa:"
for taxa in nexml_project.get_otus():

for otu in taxa.get_otu():
print "OTU:", otu.id

Extracts all the collection of trees in the project
tree_collections = nexml_project.get_trees()
Select the first collection
collection_1 = tree_collections[0]

print the topology of every tree
for tree in collection_1.get_tree():

trees contain all the nexml information in their "nexml_node",
"nexml_tree", and "nexml_edge" attributes.
print "Tree id", tree.nexml_tree.id
print tree
for node in tree.traverse():

print "node", node.nexml_node.id, "is associated with", node.nexml_node.otu, "OTU"

Output:
==========
Loaded Taxa:
OTU: t1
OTU: t2
OTU: t3
OTU: t4
OTU: t5
Tree id tree1
#
/-n5(n5)
/---|
| \-n6(n6)
/---|
| | /-n8(n8)
----| \---|
| \-n9(n9)
|
\-n2(n2)
node n1 is associated with None OTU
node n3 is associated with None OTU

72 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

node n2 is associated with t1 OTU
node n4 is associated with None OTU
node n7 is associated with None OTU
node n5 is associated with t3 OTU
node n6 is associated with t2 OTU
node n8 is associated with t5 OTU
node n9 is associated with t4 OTU
Tree id tree2
#
/-tree2n5(n5)
/---|
| \-tree2n6(n6)
/---|
| | /-tree2n8(n8)
----| \---|
| \-tree2n9(n9)
|
\-tree2n2(n2)
node tree2n1 is associated with None OTU
node tree2n3 is associated with None OTU
node tree2n2 is associated with t1 OTU
node tree2n4 is associated with None OTU
node tree2n7 is associated with None OTU
node tree2n5 is associated with t3 OTU
node tree2n6 is associated with t2 OTU
node tree2n8 is associated with t5 OTU
node tree2n9 is associated with t4 OTU

[Download tolweb.xml example] || [Download script]

Node meta information is also available:

from ete2 import Nexml

Creates and empty NeXML project
p = Nexml()
Fill it with the tolweb example
p.build_from_file("tolweb.xml")

extract the first collection of trees
tree_collection = p.trees[0]
and all the tree instances in it
trees = tree_collection.tree

For each loaded tree, prints its structure and some of its
meta-properties
for t in trees:

print t
print
print "Leaf node meta information:\n"
print
for meta in t.children[0].nexml_node.meta:

print meta.property, ":", (meta.content)

Output
==========
#

3.6. Phylogenetic XML standards 73

Tutorial: Environment for Tree Exploration, Release 2.1 beta

---- /-node3(Eurysphindus)
#
Leaf node meta information:
#
#
dc:description :
tbe:AUTHORITY : Leconte
tbe:AUTHDATE : 1878
tba:ANCESTORWITHPAGE : 117851
tba:CHILDCOUNT : 0
tba:COMBINATION_DATE : null
tba:CONFIDENCE : 0
tba:EXTINCT : 0
tba:HASPAGE : 1
tba:ID : 117855
tba:INCOMPLETESUBGROUPS : 0
tba:IS_NEW_COMBINATION : 0
tba:ITALICIZENAME : 1
tba:LEAF : 0
tba:PHYLESIS : 0
tba:SHOWAUTHORITY : 0
tba:SHOWAUTHORITYCONTAINING : 1

[Download tolweb.xml example] || [Download script]

Creating Nexml project from scratch Nexml base class can also be used to create projects from
scratch in a programmatic way. Using the collection of NeXML classes provided by the:mod:ete2.nexml
module, you can populate an empty project and export it as XML.

import sys
Note that we import the nexml module rather than the root Nexml
class. This module contains a python object for each of the
nexml elements declared in its XML schema.
from ete2 import nexml

Create an empty Nexml project
nexml_project = nexml.Nexml()
tree_collection = nexml.Trees()

NexmlTree is a special PhyloTree instance that is prepared to be
added to NeXML projects. So lets populate a random tree
nexml_tree = nexml.NexmlTree()
Random tree with 10 leaves
nexml_tree.populate(10, random_branches=True)
We add the tree to the collection
tree_collection.add_tree(nexml_tree)

Create another tree from a newick string
nexml_tree2 = nexml.NexmlTree("((hello, nexml):1.51, project):0.6;")
tree_collection.add_tree(nexml_tree2)

Tree can be handled as normal ETE objects
nexml_tree2.show()

Add the collection of trees to the NexML project object
nexml_project.add_trees(tree_collection)

74 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Now we can export the project containing our two trees
nexml_project.export()

[Download script]

Writing NeXML objects Every NexML object has its own export() method. By calling it, you
can obtain the XML representation of any instance contained in the Nexml project structure. Usually,
all you will need is to export the whole project, but individual elements can be exported.

import sys
from ete2 import Nexml
Create an empty Nexml project
nexml_project = Nexml()

Upload content from file
nexml_project.build_from_file("nexml_example.xml")

Extract first collection of trees
tree_collection = nexml.get_trees()[0]

And export it
tree_collection.export(output=sys.stdout, level=0)

NeXML tree manipulation and visualization

NeXML trees contain all ETE PhyloTree functionality: orthology prediction, topology manipulation
and traversing methods, visualization, etc.

For instance, tree changes performed through the visualization GUI are kept in the NeXML format.

from ete2 import nexml
nexml_tree = nexml.NexMLTree("((hello, nexml):1.51, project):0.6;")
tree_collection.add_tree(nexml_tree)
nexml_tree.show()

New in version 2.1.

3.6.2 PhyloXML

PhyloXML (http://www.phyloxml.org/) is a novel standard used to encode phylogenetic information.
In particular, phyloXML is designed to describe phylogenetic trees (or networks) and associated data,
such as taxonomic information, gene names and identifiers, branch lengths, support values, and gene
duplication and speciation events.

Loading PhyloXML projects from files

ETE provides full support for phyloXML projects through the Phyloxml object. Phylogenies are
integrated as ETE’s tree data structures as PhyloxmlTree instances, while the rest of features are
represented as simple classes (ete2.phyloxml) providing basic reading and writing operations.

3.6. Phylogenetic XML standards 75

http://www.phyloxml.org/

Tutorial: Environment for Tree Exploration, Release 2.1 beta

from ete2 import Phyloxml
project = Phyloxml()
project.build_from_file("apaf.xml")

Each tree contains the same methods as a PhyloTree object
for tree in project.get_phylogeny():

print tree
you can even use rendering options
tree.show()
PhyloXML features are stored in the phyloxml_clade attribute
for node in tree:

print "Node name:", node.name
for seq in node.phyloxml_clade.get_sequence():

for domain in seq.domain_architecture.get_domain():
domain_data = [domain.valueOf_, domain.get_from(), domain.get_to()]
print " Domain:", ’\t’.join(map(str, domain_data))

[Download script] [Download example]

Each tree node contains two phyloxml elements, phyloxml_clade and phyloxml_phylogeny.
The first attribute contains clade information referred to the node, while phyloxml_phylogeny
contains general data about the subtree defined by each node. This way, you can split, or copy any part
of a tree and it will be exported as a separate phyloxml phylogeny instance.

Note that node.dist, node.support and node.name features are linked to
node.phyloxml_clade.branch_length, node.phyloxml_clade.confidence
and node.phyloxml_clade.name, respectively.

Creating PhyloXML projects from scratch

In order to create new PhyloXML projects, a set of classes is available in the ete2.phyloxmlmodule.

from ete2 import Phyloxml, phyloxml
import random
project = Phyloxml()

Creates a random tree
phylo = phyloxml.PhyloxmlTree()
phylo.populate(5, random_branches=True)
phylo.phyloxml_phylogeny.set_name("test_tree")
Add the tree to the phyloxml project
project.add_phylogeny(phylo)

print project.get_phylogeny()[0]

/-iajom
/---|
| \-wiszh
#----|
| /-xrygw
\---|
| /-gjlwx
\---|
\-ijvnk

Trees can be operated as normal ETE trees

76 Chapter 3. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 2.1 beta

phylo.show()

Export the project as phyloXML format
project.export()

<phy:Phyloxml xmlns:phy="http://www.phyloxml.org/1.10/phyloxml.xsd">
<phy:phylogeny>
<phy:name>test_tree</phy:name>
<phy:clade>
<phy:name>NoName</phy:name>
<phy:branch_length>0.000000e+00</phy:branch_length>
<phy:confidence type="branch_support">1.0</phy:confidence>
<phy:clade>
<phy:name>NoName</phy:name>
<phy:branch_length>1.665083e-01</phy:branch_length>
<phy:confidence type="branch_support">0.938507980435</phy:confidence>
<phy:clade>
<phy:name>NoName</phy:name>
<phy:branch_length>1.366655e-01</phy:branch_length>
<phy:confidence type="branch_support">0.791888248212</phy:confidence>
<phy:clade>
<phy:name>ojnfg</phy:name>
<phy:branch_length>2.194209e-01</phy:branch_length>
<phy:confidence type="branch_support">0.304705977822</phy:confidence>
</phy:clade>
<phy:clade>
<phy:name>qrfnz</phy:name>
<phy:branch_length>5.235437e-02</phy:branch_length>
<phy:confidence type="branch_support">0.508533765418</phy:confidence>
</phy:clade>
</phy:clade>
<phy:clade>
<phy:name>shngq</phy:name>
<phy:branch_length>9.740958e-01</phy:branch_length>
<phy:confidence type="branch_support">0.642187390965</phy:confidence>
</phy:clade>
</phy:clade>
<phy:clade>
<phy:name>NoName</phy:name>
<phy:branch_length>3.806412e-01</phy:branch_length>
<phy:confidence type="branch_support">0.383619811911</phy:confidence>
<phy:clade>
<phy:name>vfmnk</phy:name>
<phy:branch_length>6.495163e-01</phy:branch_length>
<phy:confidence type="branch_support">0.141298879514</phy:confidence>
</phy:clade>
<phy:clade>
<phy:name>btexi</phy:name>
<phy:branch_length>5.704955e-01</phy:branch_length>
<phy:confidence type="branch_support">0.951876078012</phy:confidence>
</phy:clade>
</phy:clade>
</phy:clade>
</phy:phylogeny>
</phy:Phyloxml>

[Download script]

3.6. Phylogenetic XML standards 77

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Note: NeXML and PhyloXML python parsers are possible thanks to Dave Kulhman and his work on
the generateDS.py application. Thanks Dave! ;-)

New in version 2.1.

3.7 Overview

Starting at version 2.1, ETE provides a module to interactively display trees within web pages. This task
is not straightforward, but ETE tries to simplify it by providing a basic WebTreeApplication class
that can be imported in your python web applications.

WebTreeApplication implements a transparent connector between ETE’s functionality and web
application. For this, a pre-built WSGI application is provided.

Through this application, you will be able to create custom web implementations to visualize and ma-
nipulate trees interactively. Some examples can be found at the PhylomeDB tree browser or in the ETE’s
online treeviewer.

3.7.1 Installing a X server

All modern linux desktop installations include a graphical interface (called X server). However web
servers (in which the ETE plugin is expected to run) may not count with a X server.

3.7.2 Servers

In order to render tree images with ETE, you will need to install, at least, a basic X server. Note that the
X server does not require a desktop interface, such as Gnome or KDE.

In Ubuntu, for instance, a basic X server called xdm can be installed as follows:

apt-get install xserver-xorg xdm xfonts-base xfonts-100dpi
xfonts-75dpi

Once the X server is installed, you will need to configure it to accept connections from the web-server.

In our example, edit the /etc/X11/xdm/xdm-config file and set following values:

DisplayManager*authorize: false
!
DisplayManager*authComplain: false

Do not forget to restart your xdm server.

/etc/init.d/xdm restart

3.7.3 Desktops

If you plan to use web tree application in a linux desktop computer, then the X server is already installed.
You will only need to give permissions to the web-server (i.e. apache) to connect your display. Usually,
as simple as running the following command in a terminal:

78 Chapter 3. The ETE tutorial

http://www.rexx.com/~dkuhlman/generateDS.html
http://wsgi.org
http://phylomedb.org/?q=search_tree&seqid=Phy00085K5_HUMAN
http://ete.cgenomics.org/treeview
http://ete.cgenomics.org/treeview

Tutorial: Environment for Tree Exploration, Release 2.1 beta

xhost +

3.7.4 Configuring the web sever

You will need to add support for WSGI application to your web server. In the following steps, an
Apache2 web server will be assumed.

• Install and activate the modwsgi module in Apache.

• Configure your site to support WSGI.

Configuration will depend a lot on your specific system, but this is an example configuration file for the
default site of your Apache server (usually at /ete/apache2/sites-available/default):

<VirtualHost *:80>
ServerAdmin webmaster@localhost

DocumentRoot /var/www
<Directory />

Options +FollowSymLinks
AllowOverride None

</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

CustomLog /var/log/apache2/access.log combined

#
WSGI SPECIFIC CONFIG

WSGIDaemonProcess eteApp user=www-data group=www-data processes=1 threads=1
WSGIProcessGroup eteApp
WSGIApplicationGroup %{GLOBAL}

<Directory /var/www/webplugin/>
Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
SetHandler wsgi-script
Order allow,deny
Allow from all
AddHandler wsgi-script .py

</Directory>

END OF WSGI SPECIFIC CONFIG
#

</VirtualHost>

Note: /var/www/webplugin/wsgi/ is the folder in which python web application will be located. Make
sure that the apache WSGI config enables this folder to run wsgi-scripts.

3.7. Overview 79

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Warning: Important notes:
/var/www/webplugin/ is assumed to be the directory in which your application will run.
/var/www/webplugin/tmp/ should be writable by the web-server (i.e. chmod 777)

3.7.5 Implementation of WebTreeApplications

ETE’s WebTreeApplication uses WSGI in the backend, and a several javascript files in the fron-
tend. Basic files are included as an example in the ETE installation package examples/webplugin.
The whole example folder is necessary, and it contains a commented copy of a web-tree implementation
examples/webplugin/wsgi/webplugin_example.py.

80 Chapter 3. The ETE tutorial

http://pypi.python.org/pypi/ete2

CHAPTER 4

ETE’s Reference Guide

Current modules:

4.1 Master Tree class

class TreeNode(newick=None, format=0)
TreeNode (Tree) class is used to store a tree structure. A tree consists of a collection of TreeNode
instances connected in a hierarchical way. Trees can be loaded from the New Hampshire Newick
format (newick).

Parameters

• newick – Path to the file containing the tree or, alternatively, the text string
containing the same information.

• format (0) – subnewick format

FORMAT DESCRIPTION
0 flexible with support values
1 flexible with internal node names
2 all branches + leaf names + internal supports
3 all branches + all names
4 leaf branches + leaf names
5 internal and leaf branches + leaf names
6 internal branches + leaf names
7 leaf branches + all names
8 all names
9 leaf names
100 topology only

Returns a tree node object which represents the base of the tree.

** Examples: **

t1 = Tree() # creates an empty tree
t2 = Tree(’(A:1,(B:1,(C:1,D:1):0.5):0.5);’)
t3 = Tree(’/home/user/myNewickFile.txt’)

81

Tutorial: Environment for Tree Exploration, Release 2.1 beta

add_child(child=None, name=None, dist=None, support=None)
Adds a new child to this node. If child node is not suplied as an argument, a new node
instance will be created.

Parameters

• child (None) – the node instance to be added as a child.

• name (None) – the name that will be given to the child.

• dist (None) – the distance from the node to the child.

• support’ (None) – the support value of child partition.

Returns The child node instance

add_face(face, column, position=’branch-right’)
Add a fixed face to the node. This type of faces will be always attached to nodes, indepen-
dently of the layout function.

Parameters

• face – a Face or inherited instance

• column – An integer number starting from 0

• position (“branch-right”) – Posible values are: “branch-right”, “branch-
top”, “branch-bottom”, “float”, “aligned”

add_feature(pr_name, pr_value)
Add or update a node’s feature.

add_features(**features)
Add or update several features.

add_sister(sister=None, name=None, dist=None)
Adds a sister to this node. If sister node is not supplied as an argument, a new TreeNode
instance will be created and returned.

children
A list of children nodes

convert_to_ultrametric(tree_length, strategy=’balanced’)
Converts a tree to ultrametric topology (all leaves must have the same distance to root). Note
that, for visual inspection of ultrametric trees, node.img_style[”size”] should be set to 0.

copy()
Returns an exact and complete copy of current node.

del_feature(pr_name)
Permanently deletes a node’s feature.

delete(prevent_nondicotomic=True)
Deletes node from the tree structure. Notice that this method makes ‘disapear’ the node from
the tree structure. This means that children from the deleted node are transferred to the next
available parent.

Example:

/ C
root-|

| / B

82 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

\--- H |
\ A

> root.delete(H) will produce this structure:

/ C
|

root-|--B
|
\ A

describe()
Prints general information about this node and its connections.

detach()
Detachs this node (and all its descendants) from its parent and returns the referent to itself.

Detached node conserves all its structure of descendants, and can be attached to another
node through the ‘add_child’ function. This mechanism can be seen as a cut and paste.

dist
Branch length distance to parent node. Default = 0.0

get_ascii(show_internal=True, compact=False)
Returns a string containing an ascii drawing of the tree.

Parameters

• show_internal – includes internal edge names.

• compact – use exactly one line per tip.

get_children()
Returns an independent list of node’s children.

get_common_ancestor(*target_nodes, **kargs)
Returns the first common ancestor between this node and a given list of ‘target_nodes’.

Examples:

t = tree.Tree("(((A:0.1, B:0.01):0.001, C:0.0001):1.0[&&NHX:name=common], (D:0.00001):0.000001):2.0[&&NHX:name=root];")
A = t.get_descendants_by_name("A")[0]
C = t.get_descendants_by_name("C")[0]
common = A.get_common_ancestor(C)
print common.name

get_common_ancestor_OLD(*target_nodes)
Returns the first common ancestor between this node and a given list of ‘target_nodes’.

Examples:

t = tree.Tree("(((A:0.1, B:0.01):0.001, C:0.0001):1.0[&&NHX:name=common], (D:0.00001):0.000001):2.0[&&NHX:name=root];")
A = t.get_descendants_by_name("A")[0]
C = t.get_descendants_by_name("C")[0]
common = A.get_common_ancestor(C)
print common.name

get_descendants(strategy=’levelorder’, is_leaf_fn=None)
Returns a list of all (leaves and internal) descendant nodes.

4.1. Master Tree class 83

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Parameters is_leaf_fn (None) – See TreeNode.traverse() for documenta-
tion.

get_distance(target, target2=None, topology_only=False)
Returns the distance between two nodes. If only one target is specified, it returns the distance
bewtween the target and the current node.

Parameters

• target – a node within the same tree structure.

• target2 – a node within the same tree structure. If not specified, current
node is used as target2.

• topology_only (False) – If set to True, distance will refer to the number of
nodes between target and target2.

Returns branch length distance between target and target2. If topology_only flag
is True, returns the number of nodes between target and target2.

get_farthest_leaf(topology_only=False)
Returns node’s farthest descendant node (which is always a leaf), and the distance to it.

Parameters topology_only (False) – If set to True, distance between nodes will
be referred to the number of nodes between them. In other words, topological
distance will be used instead of branch length distances.

Returns A tuple containing the farthest leaf referred to the current node and the
distance to it.

get_farthest_node(topology_only=False)
Returns the node’s farthest descendant or ancestor node, and the distance to it.

Parameters topology_only (False) – If set to True, distance between nodes will
be referred to the number of nodes between them. In other words, topological
distance will be used instead of branch length distances.

Returns A tuple containing the farthest node referred to the current node and the
distance to it.

get_leaf_names(is_leaf_fn=None)
Returns the list of terminal node names under the current node.

Parameters is_leaf_fn (None) – See TreeNode.traverse() for documenta-
tion.

get_leaves(is_leaf_fn=None)
Returns the list of terminal nodes (leaves) under this node.

Parameters is_leaf_fn (None) – See TreeNode.traverse() for documenta-
tion.

get_leaves_by_name(name)
Returns a list of leaf nodes matching a given name.

get_midpoint_outgroup()
Returns the node that divides the current tree into two distance-balanced partitions.

get_partitions()
It returns the set of all possible partitions under a node. Note that current implementation is
quite inefficient when used in very large trees.

84 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

t = Tree(“((a, b), e);”) partitions = t.get_partitions()

Will return: # a,b,e # a,e # b,e # a,b # e # b # a

get_sisters()
Returns an indepent list of sister nodes.

get_tree_root()
Returns the absolute root node of current tree structure.

is_leaf()
Return True if current node is a leaf.

is_root()
Returns True if current node has no parent

iter_descendants(strategy=’levelorder’, is_leaf_fn=None)
Returns an iterator over all descendant nodes.

Parameters is_leaf_fn (None) – See TreeNode.traverse() for documenta-
tion.

iter_leaf_names(is_leaf_fn=None)
Returns an iterator over the leaf names under this node.

Parameters is_leaf_fn (None) – See TreeNode.traverse() for documenta-
tion.

iter_leaves(is_leaf_fn=None)
Returns an iterator over the leaves under this node.

Parameters is_leaf_fn (None) – See TreeNode.traverse() for documenta-
tion.

iter_search_nodes(**conditions)
Search nodes in an interative way. Matches are being yield as they are being found. This
avoids to scan the full tree topology before returning the first matches. Useful when dealing
with huge trees.

ladderize(direction=0)
Sort the branches of a given tree (swapping children nodes) according to the size of each
partition.

t = Tree("(f,((d, ((a,b),c)),e));")

print t

#
/-f
|
| /-d
----| |
| /---| /-a
| | | /---|
| | \---| \-b
\---| |
| \-c
|
\-e

4.1. Master Tree class 85

Tutorial: Environment for Tree Exploration, Release 2.1 beta

t.ladderize()
print t

/-f
----|
| /-e
\---|
| /-d
\---|
| /-c
\---|
| /-a
\---|
\-b

populate(size, names_library=None, reuse_names=False, random_branches=False)
Generates a random topology by populating current node.

Parameters

• names_library (None) – If provided, names library (list, set, dict, etc.) will
be used to name nodes.

• reuse_names (False) – If True, node names will not be necessarily unique,
which makes the process a bit more efficient.

• random (False) – If True, branch distances and support values will be ran-
domized.

prune(nodes)
Prunes the topology of a node in order to conserve only a selected list of leaf or internal
nodes. The minimum number of internal nodes (the deepest as possible) are kept to conserve
the topological relationship among the provided list of nodes.

Variables nodes – a list of node names or node objects that must be kept

Examples:

t = Tree("(((A:0.1, B:0.01):0.001, C:0.0001):1.0[&&NHX:name=I], (D:0.00001):0.000001[&&NHX:name=J]):2.0[&&NHX:name=root];")
node_C = t.search_nodes(name="C")[0]
t.prune(["A","D", node_C])
print t

remove_child(child)
Removes a child from this node (parent and child nodes still exit but are no longer con-
nected).

remove_sister(sister=None)
Removes a node’s sister node. It has the same effect as ‘TreeNode.up.remove_child(sister)‘

If a sister node is not supplied, the first sister will be deleted and returned.

Parameters sister – A node instance

Returns The node removed

render(file_name, layout=None, w=None, h=None, tree_style=None, units=’px’,
dpi=300)

Renders the node structure as an image.

86 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Variables

• file_name – path to the output image file. valid extensions are .SVG, .PDF,
.PNG

• layout – a layout function or a valid layout function name

• tree_style – a TreeStyle instance containing the image properties

• units (px) – “px”: pixels, “mm”: millimeters, “in”: inches

• h (None) – height of the image in units

• w (None) – weight of the image in units

• dpi (300) – dots per inches.

search_nodes(**conditions)
Returns the list of nodes matching a given set of conditions.

Example:

tree.search_nodes(dist=0.0, name="human")

set_outgroup(outgroup)
Sets a descendant node as the outgroup of a tree. This function can be used to root a tree or
even an internal node.

Parameters outgroup – a node instance within the same tree structure that will
be used as a basal node.

set_style(node_style)
Set ‘node_style’ as the fixed style for the current node.

show(layout=None, tree_style=None)
Starts an interative session to visualize current node structure using provided layout and
TreeStyle.

sort_descendants()
This function sort the branches of a given tree by considerening node names. After the tree is
sorted, nodes are labeled using ascendent numbers. This can be used to ensure that nodes in
a tree with the same node names are always labeled in the same way. Note that if duplicated
names are present, extra criteria should be added to sort nodes. unique id is stored in _nid

support
Branch support for current node

swap_children()
Swaps current children order.

traverse(strategy=’levelorder’, is_leaf_fn=None)
Returns an iterator to traverse the tree structure under this node.

Parameters

• strategy (“levelorder”) – set the way in which tree will be traversed. Pos-
sible values are: “preorder” (first parent and then children) ‘postorder’ (first
children and the parent) and “levelorder” (nodes are visited in order from
root to leaves)

4.1. Master Tree class 87

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• is_leaf_fn (None) – If supplied, is_leaf_fn function will be used to in-
terrogate nodes about if they are terminal or internal. is_leaf_fn func-
tion should receive a node instance as first argument and return True or False.
Use this argument to traverse a tree dynamically collapsing internal nodes.

unroot()
Unroots current node. This function is expected to be used on the absolute tree root node,
but it can be also be applied to any other internal node. It will convert a split into a multifur-
cation.

up
Pointer to parent node

write(features=None, outfile=None, format=0)
Returns the newick representation of current node. Several arguments control the way in
which extra data is shown for every node:

Parameters

• features – a list of feature names to be exported using the Extended Newick
Format (i.e. features=[”name”, “dist”]). Use an empty list to export all
available features in each node (features=[])

• outfile – writes the output to a given file

• format – defines the newick standard used to encode the tree. See tutorial
for details.

Example:

t.get_newick(features=["species","name"], format=1)

Tree
alias of TreeNode

4.2 Treeview module

Contents

• Treeview module
– Tree style
– Node style
– Node faces
– Supported colors names

4.2.1 Tree style

class TreeStyle
New in version 2.1. Contains all the general image properties used to render a tree

TREE SHAPE AND IMAGE DESIGN

Variables

88 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• mode (“r”) – Valid modes are ‘c’(ircular) or ‘r’(ectangular).

• allow_face_overlap (“False”) – This option applies only for circular mode.
It prevents aligned faces to overlap each other by increasing the radius of the
circular tree. In very large trees, this may produce huge image representations.
By setting this option to True, you will obtain smaller images in which aligned
faces (typically node names) may overlap.

• layout_fn (None) – Layout function used to dynamically control the aspect of
nodes. Valid values are: None or a pointer to a method, function, etc.

• orientation (0) – If 0, tree is drawn from left-to-right. If 1, tree is drawn from
right-to-left. This property only makes sense when “r” mode is used.

• rotation (0) – Tree figure will be rotate X degrees (clock-wise rotation)

• scale (None) – Scale used to convert branch lengths to pixels. If ‘None’, the
scale will be calculated using the “tree_width” attribute (read bellow)

• tree_width (200) – Total width, in pixels, that tree branches are allowed to
used. This is, the distance in pixels from root to the most distant leaf. If set,
this value will be used to automatically calculate the branch scale. In practice,
increasing this number will cause an X-zoom in.

• min_leaf_separation (1) – Min separation, in pixels, between two adjacent
branches

• branch_vertical_margin (0) – Leaf branch separation margin, in pixels. This
will add a separation of X pixels between adjacent leaf branches. In practice
this produces a Y-zoom in.

• arc_start (0) – When circular trees are drawn, this defines the starting angle
(in degrees) from which leaves are distributed (clock-wise) around the total
arc. 0 = 3 o’clock

• arc_span (360) – Total arc used to draw circular trees (in degrees)

• margin_left (0) – Left tree image margin, in pixels

• margin_right (0) – Right tree image margin, in pixels

• margin_top (0) – Top tree image margin, in pixels

• margin_bottom (0) – Bottom tree image margin, in pixels

TREE BRANCHES

Variables

• complete_branch_lines_when_necesary (True) – True or False. When top-
branch and bottom-branch faces are larger than branch length, branch line can
be completed. Also, when circular trees are drawn

• extra_branch_line_type (2) – 0 solid, 1 dashed, 2 dotted

• extra_branch_line_color” (“gray”) – RGB code or name in SVG_COLORS

• force_topology (False) – Convert tree branches to a fixed length, thus allow-
ing to observe the topology of tight nodes

• draw_guiding_lines (True) – Draw guidelines from leaf nodes to aligned
faces

4.2. Treeview module 89

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• guiding_lines_type (2) – 0 solid, 1 dashed, 2 dotted

• guiding_lines_color (“gray”) – RGB code or name in SVG_COLORS

FACES

Variables

• draw_aligned_faces_as_table (True) – Aligned faces will be drawn as a ta-
ble, considering all columns in all node faces.

• children_faces_on_top (True) – When floating faces from different nodes
overlap, children faces are drawn on top of parent faces. This can be reversed
by setting this attribute to false.

Addons

Variables

• show_border (False) – Draw a border around the whole tree

• show_scale (True) – Include the scale legend in the tree image

• show_leaf_name (False) – Automatically adds a text Face to leaf nodes show-
ing their names

• show_branch_length (False) – Automatically adds branch length informa-
tion on top of branches

• show_branch_support (False) – Automatically adds branch support text in
the bottom of tree branches

Initialize aligned face headers

Variables

• aligned_header – a FaceContainer aligned to the end of the tree and
placed at the top part.

• aligned_foot – a FaceContainer aligned to the end of the tree and placed
at the bottom part.

• legend – a FaceContainer with an arbitrary number of faces representing
the legend of the figure.

• legend_position=4 (4) – TopLeft corner if 1, TopRight if 2, BottomLeft if 3,
BottomRight if 4

• title – A text string that will be draw as the Tree title

class FaceContainer
New in version 2.1. Use this object to create a grid of faces. You can add faces to different
columns.

add_face(face, column)
add the face face to the specified column

4.2.2 Node style

class NodeStyle(*args, **kargs)
New in version 2.1. A dictionary with all valid node graphical attributes.

90 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Parameters

• fgcolor (#0030c1) – RGB code or name in SVG_COLORS

• bgcolor (#FFFFFF) – RGB code or name in SVG_COLORS

• node_bgcolor (#FFFFFF) – RGB code or name in SVG_COLORS

• partition_bgcolor (#FFFFFF) – RGB code or name in SVG_COLORS

• faces_bgcolor (#FFFFFF) – RGB code or name in SVG_COLORS

• vt_line_color (#000000) – RGB code or name in SVG_COLORS

• hz_line_color (#000000) – RGB code or name in SVG_COLORS

• hz_line_type (0) – integer number

• vt_line_type (0) – integer number

• size (3) – integer number

• shape (“circle”) – “circle”, “square” or “sphere”

• draw_descendants (True) – Mark an internal node as a leaf.

• hz_line_width (0) – integer number representing the width of the line in pix-
els. A line width of zero indicates a cosmetic pen. This means that the pen
width is always drawn one pixel wide, independent of the transformation set
on the painter.

• vt_line_width (0) – integer number representing the width of the line in pix-
els. A line width of zero indicates a cosmetic pen. This means that the pen
width is always drawn one pixel wide, independent of the transformation set
on the painter.

4.2.3 Node faces

add_face_to_node(face, node, column, aligned=False, position=’branch-right’)
Adds a Face to a given node.

Parameters face – A Face instance

Parameters

• node – a tree node instance (Tree, PhyloTree, etc.)

• column – An integer number starting from 0

• position (“branch-right”) – Possible values are “branch-right”, “branch-top”,
“branch-bottom”, “float”, “aligned”

class Face
Standard definition of a Face node object.

This class is not functional and it should only be used to create other face objects. By inheriting
this class, you set all the essential attributes, however the update_pixmap() function is required to
be reimplemented for convenience.

User adjustable properties:

4.2. Treeview module 91

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Parameters

• margin_left (0) – in pixels

• margin_right (0) – in pixels

• margin_top (0) – in pixels

• margin_bottom (0) – in pixels

• opacity (1.0) – a float number in the (0,1) range

• rotable (True) – If True, face will be rotated when necessary (i.e. when cir-
cular mode is enabled and face occupies an inverted position.)

• hz_align (0) – 0 left, 1 center, 2 right

• vt_align (1) – 0 top, 1 center, 2 bottom

• background – background of face plus its margins

• inner_background – background of the face

• border (None) – Border around face margins. Integer number representing
the width of the face border line in pixels. A line width of zero indicates a
cosmetic pen. This means that the pen width is always drawn one pixel wide,
independent of the transformation set on the painter. A “None” value means
invisible border.

• inner_border (None) – Border around face . Integer number representing
the width of the face border line in pixels. A line width of zero indicates a
cosmetic pen. This means that the pen width is always drawn one pixel wide,
independent of the transformation set on the painter. A “None” value means
invisible border.

class TextFace(text, ftype=’Verdana’, fsize=10, fgcolor=’#000000’, penwidth=0,
fstyle=’normal’)

Static text Face object

Parameters

• text – Text to be drawn

• ftype – Font type, e.g. Arial, Verdana, Courier

• fsize – Font size, e.g. 10,12,6, (default=10)

• fgcolor – Foreground font color. RGB code or name in SVG_COLORS

• penwidth – Penwdith used to draw the text.

• fstyle – “normal” or “italic”

class AttrFace(attr, ftype=’Verdana’, fsize=10, fgcolor=’#000000’, penwidth=0,
text_prefix=’‘, text_suffix=’‘, formatter=None, fstyle=’normal’)

Dynamic text Face. Text rendered is taken from the value of a given node attribute.

Parameters

• attr – Node’s attribute that will be drawn as text

• ftype – Font type, e.g. Arial, Verdana, Courier, (default=”Verdana”)

• fsize – Font size, e.g. 10,12,6, (default=10)

92 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• fgcolor – Foreground font color. RGB code or name in SVG_COLORS

• penwidth – Penwdith used to draw the text. (default is 0)

• text_prefix – text_rendered before attribute value

• text_suffix – text_rendered after attribute value

• formatter – a text string defining a python formater to process the attribute
value before renderer. e.g. “%0.2f”

• fstyle – “normal” or “italic”

class ImgFace(img_file)
Creates a new image face object.

Parameters img_file – Image file in png,jpg,bmp format

class CircleFace(radius, color, style=’circle’)
New in version 2.1. Creates a Circle or Sphere Face.

Arguments radius integer number defining the radius of the face

Arguments color Color used to fill the circle. RGB code or name in SVG_COLORS

Arguments “circle” style Valid values are “circle” or “sphere”

class SequenceFace(seq, seqtype, fsize=10, aafg=None, aabg=None, ntfg=None,
ntbg=None)

Creates a new molecular sequence face object.

Parameters

• seq – Sequence string to be drawn

• seqtype – Type of sequence: “nt” or “aa”

• fsize – Font size, (default=10)

You can set custom colors for aminoacids or nucleotides:

Parameters

• aafg – a dictionary in which keys are aa codes and values are foreground RGB
colors

• aabg – a dictionary in which keys are aa codes and values are background
RGB colors

• ntfg – a dictionary in which keys are nucleotides codes and values are fore-
ground RGB colors

• ntbg – a dictionary in which keys are nucleotides codes and values are back-
ground RGB colors

class ProfileFace(max_v, min_v, center_v, width=200, height=40, style=’lines’, col-
orscheme=2)

A profile Face for ClusterNodes

Parameters

• max_v – maximum value used to build the build the plot scale.

• max_v – minimum value used to build the build the plot scale.

4.2. Treeview module 93

Tutorial: Environment for Tree Exploration, Release 2.1 beta

• center_v – Center value used to scale plot and heatmap.

• width (200) – Plot width in pixels.

• height (40) – Plot width in pixels.

• style (lines) – Plot style: “lines”, “bars”, “cbars” or “heatmap”.

• colorscheme (2) – colors used to create the gradient from min values to max
values. 0=green & blue; 1=green & red; 2=red & blue. In all three cases,
missing values are rendered in black and transition color (values=center) is
white.

class TreeFace(tree, tree_style)
New in version 2.1. Creates a Face containing a Tree object. Yes, a tree within a tree :)

Parameters

• tree – An ETE Tree instance (Tree, PhyloTree, etc...)

• tree_style – A TreeStyle instance defining how tree show be drawn

class StaticItemFace(item)
New in version 2.1. Creates a face based on an external QtGraphicsItem object. QGraphicsItem
object is expected to be independent from tree node properties, so its content is assumed to be
static (drawn only once, no updates when tree changes).

Arguments item an object based on QGraphicsItem

class DynamicItemFace(constructor, *args, **kargs)
New in version 2.1. Creates a face based on an external QGraphicsItem object whose content
depends on the node that is linked to.

Arguments constructor A pointer to a method (function or class constructor) return-
ing a QGraphicsItem based object. “constructor” method is expected to receive a
node instance as the first argument. The rest of arguments passed to ItemFace are
optional and will passed also to the constructor function.

4.2.4 Supported colors names

Supported Color Names

SVG_COLORS

Apart from RGB color codes, the following SVG color names are supported:

94 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

4.2. Treeview module 95

Tutorial: Environment for Tree Exploration, Release 2.1 beta

4.3 PhyloTree class

class PhyloNode(newick=None, alignment=None, alg_format=’fasta’,
sp_naming_function=<function _parse_species at 0x324ae60>, format=0)

Bases: ete2.coretype.tree.TreeNode

Extends the standard TreeNode instance. It adds specific attributes and methods to work with
phylogentic trees.

Parameters

• newick – Path to the file containing the tree or, alternatively, the text string
containing the same information.

• alignment – file containing a multiple sequence alignment.

• alg_format – “fasta”, “phylip” or “iphylip” (interleaved)

• format – sub-newick format

FORMAT DESCRIPTION
0 flexible with support values
1 flexible with internal node names
2 all branches + leaf names + internal supports
3 all branches + all names
4 leaf branches + leaf names
5 internal and leaf branches + leaf names
6 internal branches + leaf names
7 leaf branches + all names
8 all names
9 leaf names
100 topology only

• sp_naming_function – Pointer to a parsing python function that re-
ceives nodename as first argument and returns the species name (see
PhyloNode.set_species_naming_function(). By default, the 3
first letter of nodes will be used as species identifiers.

Returns a tree node object which represents the base of the tree.

get_age(species2age)

get_age_balanced_outgroup(species2age)
New in version 2.x. Returns the best outgroup according to topological ages and node sizes.

Currently Experimental !!

get_descendant_evol_events(sos_thr=0.0)
Returns a list of all duplication and speciation events detected after this node. Nodes are as-
sumed to be duplications when a species overlap is found between its child linages. Method
is described more detail in:

“The Human Phylome.” Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol.
2007;8(6):R109.

get_farthest_oldest_leaf(species2age, is_leaf_fn=None)
Returns the farthest oldest leaf to the current one. It requires an species2age dictionary with
the age estimation for all species.

96 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Parameters is_leaf_fn (None) – A pointer to a function that receives a node in-
stance as unique argument and returns True or False. It can be used to dynam-
ically collapse nodes, so they are seen as leaves.

get_farthest_oldest_node(species2age)
New in version 2.1. Returns the farthest oldest node (leaf or internal). The difference with
get_farthest_oldest_leaf() is that in this function internal nodes grouping seqs from the same
species are collapsed.

get_my_evol_events(sos_thr=0.0)
Returns a list of duplication and speciation events in which the current node has been in-
volved. Scanned nodes are also labeled internally as dup=True|False. You can access this
labels using the ‘node.dup’ sintaxis.

Method: the algorithm scans all nodes from the given leafName to the root. Nodes are as-
sumed to be duplications when a species overlap is found between its child linages. Method
is described more detail in:

“The Human Phylome.” Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol.
2007;8(6):R109.

get_species()
Returns the set of species covered by its partition.

is_monophyletic(species)
Returns True id species names under this node are all included in a given list or set of species
names.

iter_species()
Returns an iterator over the species grouped by this node.

link_to_alignment(alignment, alg_format=’fasta’)

reconcile(species_tree)
Returns the reconcilied topology with the provided species tree, and a list of evolutionary
events inferred from such reconciliation.

set_species_naming_function(fn)
Sets the parsing function used to extract species name from a node’s name.

Parameters fn – Pointer to a parsing python function that receives nodename as
first argument and returns the species name.

Example of a parsing function to extract species names for
all nodes in a given tree.
def parse_sp_name(node_name):

return node_name.split("_")[1]
tree.set_species_naming_function(parse_sp_name)

species

PhyloTree
alias of PhyloNode

class EvolEvent
Basic evolutionary event. It stores all the information about an event(node) ocurred in a phyloge-
netic tree.

etype : D (Duplication), S (Speciation), L (gene loss),

4.3. PhyloTree class 97

Tutorial: Environment for Tree Exploration, Release 2.1 beta

in_seqs : the list of sequences in one side of the event.

out_seqs : the list of sequences in the other side of the event

node : link to the event node in the tree

Contents

• Clustering module

4.4 Clustering module

class ClusterNode(newick=None, text_array=None, fdist=<function spearman_dist at
0x4d40b18>)

Bases: ete2.coretype.tree.TreeNode

Creates a new Cluster Tree object, which is a collection of ClusterNode instances connected in a
hierarchical way, and representing a clustering result.

a newick file or string can be passed as the first argument. An ArrayTable file or instance can be
passed as a second argument.

Examples: t1 = Tree() # creates an empty tree t2 = Tree(‘(A:1,(B:1,(C:1,D:1):0.5):0.5);’) t3 =
Tree(‘/home/user/myNewickFile.txt’)

get_dunn(clusters, fdist=None)
Calculates the Dunn index for the given set of descendant nodes.

get_leaf_profiles()
Returns the list of all the profiles associated to the leaves under this node.

get_silhouette(fdist=None)
Calculates the node’s silhouette value by using a given distance function. By default, eu-
clidean distance is used. It also calculates the deviation profile, mean profile, and inter/intra-
cluster distances.

It sets the following features into the analyzed node:

• node.intracluster

• node.intercluster

• node.silhouete

intracluster distances a(i) are calculated as the Centroid Diameter

intercluster distances b(i) are calculated as the Centroid linkage distance

** Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math., 20, 53-65.

iter_leaf_profiles()
Returns an iterator over all the profiles associated to the leaves under this node.

link_to_arraytable(arraytbl)
Allows to link a given arraytable object to the tree structure under this node. Row names in
the arraytable object are expected to match leaf names.

98 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

Returns a list of nodes for with profiles could not been found in arraytable.

set_distance_function(fn)
Sets the distance function used to calculate cluster distances and silouette index.

ARGUMENTS:

fn: a pointer to python function acepting two arrays (numpy) as arguments.

EXAMPLE:

A simple euclidean distance my_dist_fn = lambda x,y: abs(x-y)
tree.set_distance_function(my_dist_fn)

ClusterTree
alias of ClusterNode

New in version 2.1.

4.5 Nexml module

4.5.1 Nexml classes linked to ETE

class Nexml(*args, **kargs)
Creates a new nexml project.

build_from_file(fname, index_otus=True)
Populate Nexml project with data in a nexml file.

class NexmlTree(newick=None, alignment=None, alg_format=’fasta’,
sp_naming_function=<function _parse_species at 0x324ae60>, format=0)

Special PhyloTree object with nexml support

4.5.2 Generic Nexml classes

class AAChar(about=None, meta=None, label=None, id=None, tokens=None, states=None,
codon=None, valueOf_=None)

A concrete implementation of the AbstractChar element.

AAChar.superclass
alias of AbstractChar

class AAFormat(about=None, meta=None, states=None, char=None, set=None, val-
ueOf_=None)

The AAFormat class is the container of amino acid column definitions.

AAFormat.superclass
alias of AbstractFormat

class AAMapping(state=None, valueOf_=None)
An IUPAC ambiguity mapping.

AAMapping.superclass
alias of AbstractMapping

4.5. Nexml module 99

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class AAMatrixObsRow(about=None, meta=None, label=None, id=None, otu=None,
cell=None, set=None, valueOf_=None)

This is a row in a matrix of amino acid data containing granular observations.

AAMatrixObsRow.superclass
alias of AbstractObsRow

class AAMatrixSeqRow(about=None, meta=None, label=None, id=None, otu=None,
seq=None, valueOf_=None)

This is a row in a matrix of amino acid data containing raw sequence data.

AAMatrixSeqRow.superclass
alias of AbstractSeqRow

class AAObs(about=None, meta=None, label=None, char=None, state=None, val-
ueOf_=None)

This is a single cell in a matrix containing an amino acid observation.

AAObs.superclass
alias of AbstractObs

class AAObsMatrix(about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with single character observations.

AAObsMatrix.superclass
alias of AbstractObsMatrix

class AAPolymorphicStateSet(about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, uncertain_state_set=None,
valueOf_=None)

The AAPolymorphicStateSet defines a polymorphic ambiguity mapping.

AAPolymorphicStateSet.superclass
alias of AbstractPolymorphicStateSet

class AASeqMatrix(about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with amino acid data as sequence strings.

AASeqMatrix.superclass
alias of AbstractSeqMatrix

class AAState(about=None, meta=None, label=None, id=None, symbol=None, val-
ueOf_=None)

This is a concrete implementation of the state element, which requires a symbol element, in this
case restricted to AAToken, i.e. a single IUPAC amino acid symbol, and optional mapping ele-
ments to refer to other states.

AAState.superclass
alias of AbstractState

class AAStates(about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-
ueOf_=None)

A container for a set of states.

AAStates.superclass
alias of AbstractStates

class AAUncertainStateSet(about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, valueOf_=None)

The AAUncertainStateSet defines an uncertain ambiguity mapping.

100 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

AAUncertainStateSet.superclass
alias of AbstractUncertainStateSet

class AbstractBlock(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, valueOf_=None)

The AbstractBlock is the superclass for blocks that contain an element structure of type Abstract-
Format.

AbstractBlock.superclass
alias of TaxaLinked

class AbstractCells(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

The AbstractSeqBlock type is the superclass for character blocks that consist of granular character
state observations.

AbstractCells.superclass
alias of AbstractBlock

class AbstractChar(about=None, meta=None, label=None, id=None, tokens=None,
states=None, codon=None, valueOf_=None)

The AbstractChar type is the superclass for a column definition, which may have a “states” at-
tribute that refers to an AbstractStates element, a codon attribute of type CodonPosition and an id
attribute that may be an actual id (e.g. for categorical matrices where observations explicitly refer
to a column definition) or an integer for sequence matrices.

AbstractChar.superclass
alias of IDTagged

class AbstractEdge(about=None, meta=None, label=None, id=None, source=None,
length=None, target=None, valueOf_=None)

The AbstractEdge superclass is what concrete edges inherit from by restriction. It represents an
edge element much like that of GraphML, i.e. an element that connects node elements.

AbstractEdge.superclass
alias of IDTagged

class AbstractFormat(about=None, meta=None, states=None, char=None, set=None, val-
ueOf_=None)

The AbstractFormat type is the superclass for the element that defines the allowed characters and
states in a matrix, and their ambiguity mapping. It may enclose AbstractStates elements that define
states and their mappings, and AbstractChar elements that specify which AbstractStates apply to
which matrix columns.

AbstractFormat.superclass
alias of Annotated

class AbstractMapping(state=None, valueOf_=None)
The AbstractMapping type is the superclass for an ambiguity mapping. In an instance document,
a subclass of this type will look like <member state=”st1”/>, i.e. an element called “member” with
an attribute called “state” whose value is an id reference that refers to an element that subclasses
AbstractState. The purpose of AbstractMapping is to specify which other states may be implied,
e.g. a nucleotide symbol “N” would have mappings to “A”, “C”, “G” and “T”.

AbstractMapping.superclass
alias of Base

class AbstractNetwork(about=None, meta=None, label=None, id=None, node=None,
edge=None, set=None, valueOf_=None)

4.5. Nexml module 101

Tutorial: Environment for Tree Exploration, Release 2.1 beta

The AbstractNetwork superclass is what a concrete network inherits from.

AbstractNetwork.superclass
alias of IDTagged

class AbstractNode(about=None, meta=None, label=None, id=None, otu=None,
root=False, valueOf_=None)

The AbstractNode superclass is what concrete nodes inherit from by restriction. It represents a
node element much like that of GraphML, i.e. an element that is connected into a tree by edge
elements.

AbstractNode.superclass
alias of OptionalTaxonLinked

class AbstractObs(about=None, meta=None, label=None, char=None, state=None, val-
ueOf_=None)

The AbstractObs type is the superclass for single observations, i.e. cells in a matrix. A concrete
instance of AbstractObs has a “char” attribute that refers to an explicitly defined character (e.g. in
categorical matrices), and a “state” attribute that either holds a reference to an explicitly defined
state, or a raw state value (a continuous value).

AbstractObs.superclass
alias of Labelled

class AbstractObsMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

The AbstractObsMatrix super class is the abstract type for a <matrix> element that contains rows
which hold granular state observations.

AbstractObsMatrix.superclass
alias of Annotated

class AbstractObsRow(about=None, meta=None, label=None, id=None, otu=None,
cell=None, set=None, valueOf_=None)

The AbstractObsRow represents a single row in a matrix. The row must refer to a previously
declared otu element by its id attribute (and must have an id itself, may have a label, and may have
meta attachments). The row contains multiple cell elements.

AbstractObsRow.superclass
alias of TaxonLinked

class AbstractPolymorphicStateSet(about=None, meta=None, label=None,
id=None, symbol=None, member=None, un-
certain_state_set=None, valueOf_=None)

The AbstractPolymorphicStateSet type is the super-class for a polymorphic state set definition.
The element has a required AbstractSymbol attribute that in restricted concrete subclasses must be
of a sensible type such as a single IUPAC character. It may enclose zero or more AbstractMapping
elements to resolve ambiguities.

AbstractPolymorphicStateSet.superclass
alias of AbstractUncertainStateSet

class AbstractRootEdge(about=None, meta=None, label=None, id=None, length=None,
target=None, valueOf_=None)

The AbstractRootEdge complex type is a superclass for the edge that leads into a root, i.e. an edge
with only a target attribute, but no source attribute. This type of edge is used for coalescent trees,
where the initial lineage has a certain length before things start splitting up.

102 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

AbstractRootEdge.superclass
alias of IDTagged

class AbstractSeqMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

The AbstractSeqMatrix super class is the abstract type for a <matrix> element that contains rows
which hold raw character sequences.

AbstractSeqMatrix.superclass
alias of Annotated

class AbstractSeqRow(about=None, meta=None, label=None, id=None, otu=None,
seq=None, valueOf_=None)

The AbstractSeqRow represents a single row in a matrix. The row must refer to a previously
declared otu element by its id attribute (and must have an id itself, may have a label, and may have
meta attachments). The row contains a single seq element with raw character data.

AbstractSeqRow.superclass
alias of TaxonLinked

class AbstractSeqs(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

The AbstractSeqBlock type is the superclass for character blocks that consist of raw character
sequences.

AbstractSeqs.superclass
alias of AbstractBlock

class AbstractState(about=None, meta=None, label=None, id=None, symbol=None, val-
ueOf_=None)

The AbstractState type is the super-class for a state definition. The element has a required symbol
attribute that in restricted concrete subclasses must be of a sensible type such as a single IUPAC
character. It may enclose zero or more AbstractMapping elements to resolve ambiguities.

AbstractState.superclass
alias of IDTagged

class AbstractStates(about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-
ueOf_=None)

A container for a set of AbstractState elements.

AbstractStates.superclass
alias of IDTagged

class AbstractTree(about=None, meta=None, label=None, id=None, node=None, root-
edge=None, edge=None, set=None, valueOf_=None)

The AbstractTree superclass is what a concrete tree inherits from.

AbstractTree.superclass
alias of IDTagged

class AbstractTrees(about=None, meta=None, label=None, id=None, network=None,
tree=None, set=None, valueOf_=None)

The AbstractTrees superclass is what concrete trees inherit from.

AbstractTrees.superclass
alias of IDTagged

4.5. Nexml module 103

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class AbstractUncertainStateSet(about=None, meta=None, label=None, id=None,
symbol=None, member=None, valueOf_=None)

The AbstractUncertainStateSet type is the super-class for an uncertain state set definition. The
element has a required AbstractSymbol attribute that in restricted concrete subclasses must be of
a sensible type such as a single IUPAC character. It may enclose zero or more AbstractMapping
elements to resolve ambiguities.

AbstractUncertainStateSet.superclass
alias of AbstractState

class Annotated(about=None, meta=None, valueOf_=None)
The Annotated complexType is a super class for objects that optionally have metadata annotations
of type Meta.

Annotated.superclass
alias of Base

class Base(valueOf_=None)
The base type for all complexType definitions in the nexml schema. This type allows a number of
special attributes: xml:lang - for languages codes xml:base - see http://www.w3.org/TR/xmlbase/
xml:id - see http://www.w3.org/TR/xml-id/ xml:space - for whitespace handling xlink:href - for
links Also see http://www.w3.org/2001/xml.xsd for more information on the xml and xlink at-
tributes.

class ContinuousCells(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

A continuous characters block consisting of granular cells preceded by metadata.

ContinuousCells.superclass
alias of AbstractCells

class ContinuousChar(about=None, meta=None, label=None, id=None, tokens=None,
states=None, codon=None, valueOf_=None)

A concrete implementation of the char element, which requires only an id attribute.

ContinuousChar.superclass
alias of AbstractChar

class ContinuousFormat(about=None, meta=None, states=None, char=None, set=None,
valueOf_=None)

The ContinuousFormat class is the container of continuous column definitions.

ContinuousFormat.superclass
alias of AbstractFormat

class ContinuousMatrixObsRow(about=None, meta=None, label=None, id=None,
otu=None, cell=None, set=None, valueOf_=None)

This is a row in a matrix of continuous data as granular obervations.

ContinuousMatrixObsRow.superclass
alias of AbstractObsRow

class ContinuousMatrixSeqRow(about=None, meta=None, label=None, id=None,
otu=None, seq=None, valueOf_=None)

This is a row in a matrix of continuous data as character sequences.

ContinuousMatrixSeqRow.superclass
alias of AbstractSeqRow

104 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class ContinuousObs(about=None, meta=None, label=None, char=None, state=None, val-
ueOf_=None)

This is a single cell in a matrix containing a continuous observation.

ContinuousObs.superclass
alias of AbstractObs

class ContinuousObsMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

A matrix of rows with single character observations.

ContinuousObsMatrix.superclass
alias of AbstractObsMatrix

class ContinuousSeqMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

A matrix of rows with seq strings of type continuous.

ContinuousSeqMatrix.superclass
alias of AbstractSeqMatrix

class ContinuousSeqs(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

A continuous characters block consisting of float sequences preceded by metadata.

ContinuousSeqs.superclass
alias of AbstractSeqs

class DNAChar(about=None, meta=None, label=None, id=None, tokens=None, states=None,
codon=None, valueOf_=None)

A concrete implementation of the AbstractChar element.

DNAChar.superclass
alias of AbstractChar

class DNAFormat(about=None, meta=None, states=None, char=None, set=None, val-
ueOf_=None)

The DNAFormat class is the container of DNA column definitions.

DNAFormat.superclass
alias of AbstractFormat

class DNAMapping(state=None, valueOf_=None)
An IUPAC ambiguity mapping.

DNAMapping.superclass
alias of AbstractMapping

class DNAMatrixObsRow(about=None, meta=None, label=None, id=None, otu=None,
cell=None, set=None, valueOf_=None)

This is a row in a matrix of DNA data containing granular observations.

DNAMatrixObsRow.superclass
alias of AbstractObsRow

class DNAMatrixSeqRow(about=None, meta=None, label=None, id=None, otu=None,
seq=None, valueOf_=None)

This is a row in a matrix of DNA data containing raw sequence data.

DNAMatrixSeqRow.superclass
alias of AbstractSeqRow

4.5. Nexml module 105

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class DNAObs(about=None, meta=None, label=None, char=None, state=None, val-
ueOf_=None)

This is a single cell in a matrix containing a nucleotide observation.

DNAObs.superclass
alias of AbstractObs

class DNAObsMatrix(about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with single character observations.

DNAObsMatrix.superclass
alias of AbstractObsMatrix

class DNAPolymorphicStateSet(about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, uncertain_state_set=None,
valueOf_=None)

The DNAPolymorphicStateSet type defines an IUPAC ambiguity mapping. It may enclose zero
or more AbstractMapping elements to resolve ambiguities.

DNAPolymorphicStateSet.superclass
alias of AbstractPolymorphicStateSet

class DNASeqMatrix(about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with seq strings of type DNA.

DNASeqMatrix.superclass
alias of AbstractSeqMatrix

class DNAState(about=None, meta=None, label=None, id=None, symbol=None, val-
ueOf_=None)

This is a concrete implementation of the state element, which requires a symbol element, in this
case restricted to DNAToken, i.e. a single IUPAC nucleotide symbol, and optional mapping ele-
ments to refer to other states.

DNAState.superclass
alias of AbstractState

class DNAStates(about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-
ueOf_=None)

A container for a set of states.

DNAStates.superclass
alias of AbstractStates

class DNAUncertainStateSet(about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, valueOf_=None)

The DNAUncertainStateSet type defines an IUPAC ambiguity mapping. It may enclose zero or
more AbstractMapping elements to resolve ambiguities.

DNAUncertainStateSet.superclass
alias of AbstractUncertainStateSet

class DnaCells(about=None, meta=None, label=None, id=None, otus=None, format=None,
matrix=None, valueOf_=None)

A DNA characters block consisting of granular cells preceded by metadata.

DnaCells.superclass
alias of AbstractCells

106 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class DnaSeqs(about=None, meta=None, label=None, id=None, otus=None, format=None,
matrix=None, valueOf_=None)

A DNA characters block consisting of sequences preceded by metadata.

DnaSeqs.superclass
alias of AbstractSeqs

class FloatNetwork(about=None, meta=None, label=None, id=None, node=None,
edge=None, set=None, valueOf_=None)

A concrete network implementation, with floating point edge lengths.

FloatNetwork.superclass
alias of AbstractNetwork

class FloatTree(about=None, meta=None, label=None, id=None, node=None, root-
edge=None, edge=None, set=None, valueOf_=None)

A concrete tree implementation, with floating point edge lengths.

FloatTree.subclass
alias of NexmlTree

FloatTree.superclass
alias of AbstractTree

class IDTagged(about=None, meta=None, label=None, id=None, valueOf_=None)
The IDTagged complexType is a super class for objects that require unique id attributes of type
xs:ID. The id must be unique within the XML document.

IDTagged.superclass
alias of Labelled

class IntNetwork(about=None, meta=None, label=None, id=None, node=None,
edge=None, set=None, valueOf_=None)

A concrete network implementation, with integer edge lengths.

IntNetwork.superclass
alias of AbstractNetwork

class IntTree(about=None, meta=None, label=None, id=None, node=None, rootedge=None,
edge=None, set=None, valueOf_=None)

A concrete tree implementation, with integer edge lengths.

IntTree.subclass
alias of NexmlTree

IntTree.superclass
alias of AbstractTree

class Labelled(about=None, meta=None, label=None, valueOf_=None)
The Labelled complexType is a super class for objects that optionally have label attributes to use
as a (non-unique) name of type xs:string.

Labelled.superclass
alias of Annotated

class LiteralMeta(datatype=None, content=None, property=None, valueOf_=None)
Metadata annotations in which the object is a literal value. If the @content attribute is used, then
the element should contain no children.

4.5. Nexml module 107

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class NetworkFloatEdge(about=None, meta=None, label=None, id=None, source=None,
length=None, target=None, valueOf_=None)

A concrete network edge implementation, with float edge.

NetworkFloatEdge.superclass
alias of AbstractEdge

class NetworkIntEdge(about=None, meta=None, label=None, id=None, source=None,
length=None, target=None, valueOf_=None)

A concrete network edge implementation, with int edge.

NetworkIntEdge.superclass
alias of AbstractEdge

class NetworkNode(about=None, meta=None, label=None, id=None, otu=None, root=False,
valueOf_=None)

A concrete network node implementation.

NetworkNode.superclass
alias of AbstractNode

class Nexml(*args, **kargs)
Creates a new nexml project.

Nexml.build_from_file(fname, index_otus=True)
Populate Nexml project with data in a nexml file.

class OptionalTaxonLinked(about=None, meta=None, label=None, id=None, otu=None,
valueOf_=None)

The OptionalOTULinked complexType is a super class for objects that that optionally have an otu
id reference.

OptionalTaxonLinked.superclass
alias of IDTagged

class ProteinCells(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

An amino acid characters block consisting of granular cells preceded by metadata.

ProteinCells.superclass
alias of AbstractCells

class ProteinSeqs(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

An amino acid characters block consisting of sequences preceded by metadata.

ProteinSeqs.superclass
alias of AbstractSeqs

class RNAChar(about=None, meta=None, label=None, id=None, tokens=None, states=None,
codon=None, valueOf_=None)

A concrete implementation of the AbstractChar element, i.e. a single column in an alignment.

RNAChar.superclass
alias of AbstractChar

class RNAFormat(about=None, meta=None, states=None, char=None, set=None, val-
ueOf_=None)

The RNAFormat class is the container of RNA column definitions.

108 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

RNAFormat.superclass
alias of AbstractFormat

class RNAMapping(state=None, valueOf_=None)
An IUPAC RNA ambiguity mapping.

RNAMapping.superclass
alias of AbstractMapping

class RNAMatrixObsRow(about=None, meta=None, label=None, id=None, otu=None,
cell=None, set=None, valueOf_=None)

This is a row in a matrix of RNA data containing granular observations.

RNAMatrixObsRow.superclass
alias of AbstractObsRow

class RNAMatrixSeqRow(about=None, meta=None, label=None, id=None, otu=None,
seq=None, valueOf_=None)

This is a row in a matrix of RNA data containing raw sequence data.

RNAMatrixSeqRow.superclass
alias of AbstractSeqRow

class RNAObs(about=None, meta=None, label=None, char=None, state=None, val-
ueOf_=None)

This is a single cell in a matrix containing an RNA nucleotide observation.

RNAObs.superclass
alias of AbstractObs

class RNAObsMatrix(about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with single character observations.

RNAObsMatrix.superclass
alias of AbstractObsMatrix

class RNAPolymorphicStateSet(about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, uncertain_state_set=None,
valueOf_=None)

The RNAPolymorphicStateSet describes a single polymorphic IUPAC ambiguity mapping.

RNAPolymorphicStateSet.superclass
alias of AbstractPolymorphicStateSet

class RNASeqMatrix(about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with seq strings of type RNA.

RNASeqMatrix.superclass
alias of AbstractSeqMatrix

class RNAState(about=None, meta=None, label=None, id=None, symbol=None, val-
ueOf_=None)

This is a concrete implementation of the state element, which requires a symbol attribute, in
this case restricted to RNAToken, i.e. a single IUPAC nucleotide symbol, and optional mapping
elements to refer to other states.

RNAState.superclass
alias of AbstractState

4.5. Nexml module 109

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class RNAStates(about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-
ueOf_=None)

A container for a set of states.

RNAStates.superclass
alias of AbstractStates

class RNAUncertainStateSet(about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, valueOf_=None)

The RNAUncertainStateSet describes a single uncertain IUPAC ambiguity mapping.

RNAUncertainStateSet.superclass
alias of AbstractUncertainStateSet

class ResourceMeta(href=None, rel=None, meta=None, valueOf_=None)
Metadata annotations in which the object is a resource. If this element contains meta elements as
children, then the object of this annotation is a “blank node”.

class RestrictionCells(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

A standard characters block consisting of granular cells preceded by metadata.

RestrictionCells.superclass
alias of AbstractCells

class RestrictionChar(about=None, meta=None, label=None, id=None, tokens=None,
states=None, codon=None, valueOf_=None)

A concrete implementation of the char element, which requires a unique identifier and a state set
reference.

RestrictionChar.superclass
alias of AbstractChar

class RestrictionFormat(about=None, meta=None, states=None, char=None, set=None,
valueOf_=None)

The RestrictionFormat class is the container of restriction column definitions.

RestrictionFormat.superclass
alias of AbstractFormat

class RestrictionMatrixObsRow(about=None, meta=None, label=None, id=None,
otu=None, cell=None, set=None, valueOf_=None)

This is a row in a matrix of restriction site data as granular obervations.

RestrictionMatrixObsRow.superclass
alias of AbstractObsRow

class RestrictionMatrixSeqRow(about=None, meta=None, label=None, id=None,
otu=None, seq=None, valueOf_=None)

This is a row in a matrix of restriction site data as character sequences.

RestrictionMatrixSeqRow.superclass
alias of AbstractSeqRow

class RestrictionObs(about=None, meta=None, label=None, char=None, state=None,
valueOf_=None)

This is a single cell in a matrix containing a restriction site observation.

RestrictionObs.superclass
alias of AbstractObs

110 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class RestrictionObsMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

A matrix of rows with single character observations.

RestrictionObsMatrix.superclass
alias of AbstractObsMatrix

class RestrictionSeqMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

A matrix of rows with seq strings of type restriction.

RestrictionSeqMatrix.superclass
alias of AbstractSeqMatrix

class RestrictionSeqs(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

A restriction site characters block consisting of sequences preceded by metadata.

RestrictionSeqs.superclass
alias of AbstractSeqs

class RestrictionState(about=None, meta=None, label=None, id=None, symbol=None,
valueOf_=None)

This is a concrete implementation of the state element, which requires a symbol element, in this
case restricted to 0/1.

RestrictionState.superclass
alias of AbstractState

class RestrictionStates(about=None, meta=None, label=None, id=None, state=None,
polymorphic_state_set=None, uncertain_state_set=None,
set=None, valueOf_=None)

A container for a set of states.

RestrictionStates.superclass
alias of AbstractStates

class RnaCells(about=None, meta=None, label=None, id=None, otus=None, format=None,
matrix=None, valueOf_=None)

A RNA characters block consisting of granular cells preceded by metadata.

RnaCells.superclass
alias of AbstractCells

class RnaSeqs(about=None, meta=None, label=None, id=None, otus=None, format=None,
matrix=None, valueOf_=None)

A RNA characters block consisting of sequences preceded by metadata.

RnaSeqs.superclass
alias of AbstractSeqs

class StandardCells(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

A standard characters block consisting of granular cells preceded by metadata.

StandardCells.superclass
alias of AbstractCells

class StandardChar(about=None, meta=None, label=None, id=None, tokens=None,
states=None, codon=None, valueOf_=None)

A concrete implementation of the char element, which requires a states attribute to refer to a set

4.5. Nexml module 111

Tutorial: Environment for Tree Exploration, Release 2.1 beta

of defined states

StandardChar.superclass
alias of AbstractChar

class StandardFormat(about=None, meta=None, states=None, char=None, set=None, val-
ueOf_=None)

The StandardFormat class is the container of standard column definitions.

StandardFormat.superclass
alias of AbstractFormat

class StandardMapping(state=None, valueOf_=None)
A standard character ambiguity mapping.

StandardMapping.superclass
alias of AbstractMapping

class StandardMatrixObsRow(about=None, meta=None, label=None, id=None,
otu=None, cell=None, set=None, valueOf_=None)

This is a row in a matrix of standard data as granular obervations.

StandardMatrixObsRow.superclass
alias of AbstractObsRow

class StandardMatrixSeqRow(about=None, meta=None, label=None, id=None,
otu=None, seq=None, valueOf_=None)

This is a row in a matrix of standard data as character sequences.

StandardMatrixSeqRow.superclass
alias of AbstractSeqRow

class StandardObs(about=None, meta=None, label=None, char=None, state=None, val-
ueOf_=None)

This is a single cell in a matrix containing a standard observation.

StandardObs.superclass
alias of AbstractObs

class StandardObsMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

A matrix of rows with single character observations.

StandardObsMatrix.superclass
alias of AbstractObsMatrix

class StandardPolymorphicStateSet(about=None, meta=None, label=None,
id=None, symbol=None, member=None, un-
certain_state_set=None, valueOf_=None)

The StandardPolymorphicStateSet type is a single polymorphic ambiguity mapping.

StandardPolymorphicStateSet.superclass
alias of AbstractPolymorphicStateSet

class StandardSeqMatrix(about=None, meta=None, row=None, set=None, val-
ueOf_=None)

A matrix of rows with seq strings of type standard.

StandardSeqMatrix.superclass
alias of AbstractSeqMatrix

112 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class StandardSeqs(about=None, meta=None, label=None, id=None, otus=None, for-
mat=None, matrix=None, valueOf_=None)

A standard characters block consisting of sequences preceded by metadata.

StandardSeqs.superclass
alias of AbstractSeqs

class StandardState(about=None, meta=None, label=None, id=None, symbol=None, val-
ueOf_=None)

This is a concrete implementation of the state element, which requires a symbol element, in this
case restricted to integers, and optional mapping elements to refer to other states.

StandardState.superclass
alias of AbstractState

class StandardStates(about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-
ueOf_=None)

A container for a set of states.

StandardStates.superclass
alias of AbstractStates

class StandardUncertainStateSet(about=None, meta=None, label=None, id=None,
symbol=None, member=None, valueOf_=None)

The StandardUncertainStateSet type is a single uncertain ambiguity mapping.

StandardUncertainStateSet.superclass
alias of AbstractUncertainStateSet

class TaxaLinked(about=None, meta=None, label=None, id=None, otus=None, val-
ueOf_=None)

The TaxaLinked complexType is a super class for objects that that require an otus id reference.

TaxaLinked.superclass
alias of IDTagged

class TaxonLinked(about=None, meta=None, label=None, id=None, otu=None, val-
ueOf_=None)

The TaxonLinked complexType is a super class for objects that require a taxon id reference.

TaxonLinked.superclass
alias of IDTagged

class TreeFloatEdge(about=None, meta=None, label=None, id=None, source=None,
length=None, target=None, valueOf_=None)

A concrete edge implementation, with float length.

TreeFloatEdge.superclass
alias of AbstractEdge

class TreeFloatRootEdge(about=None, meta=None, label=None, id=None, length=None,
target=None, valueOf_=None)

A concrete root edge implementation, with float length.

TreeFloatRootEdge.superclass
alias of AbstractRootEdge

class TreeIntEdge(about=None, meta=None, label=None, id=None, source=None,
length=None, target=None, valueOf_=None)

A concrete edge implementation, with int length.

4.5. Nexml module 113

Tutorial: Environment for Tree Exploration, Release 2.1 beta

TreeIntEdge.superclass
alias of AbstractEdge

class TreeIntRootEdge(about=None, meta=None, label=None, id=None, length=None,
target=None, valueOf_=None)

A concrete root edge implementation, with int length.

TreeIntRootEdge.superclass
alias of AbstractRootEdge

class TreeNode(about=None, meta=None, label=None, id=None, otu=None, root=False, val-
ueOf_=None)

A concrete node implementation.

TreeNode.superclass
alias of AbstractNode

class Trees(about=None, meta=None, label=None, id=None, otus=None, network=None,
tree=None, set=None, valueOf_=None)

A concrete container for tree objects.

Trees.superclass
alias of TaxaLinked

class attrExtensions(valueOf_=None)
This element is for use in WSDL 1.1 only. It does not apply to WSDL 2.0 documents. Use in
WSDL 2.0 documents is invalid.

class Nexml(*args, **kargs)
Creates a new nexml project.

Nexml.build_from_file(fname, index_otus=True)
Populate Nexml project with data in a nexml file.

class NexmlTree(newick=None, alignment=None, alg_format=’fasta’,
sp_naming_function=<function _parse_species at 0x324ae60>, format=0)

Special PhyloTree object with nexml support

New in version 2.1.

4.6 Phyloxml Module

4.6.1 Phyloxml classes linked to ETE

class Phyloxml(*args, **kargs)

class PhyloxmlTree(phyloxml_clade=None, phyloxml_phylogeny=None, **kargs)
PhyloTree object supporting phyloXML format.

4.6.2 Generic Phyloxml classes

class Accession(source=None, valueOf_=None)
Element Accession is used to capture the local part in a sequence identifier (e.g. ‘P17304’ in
‘UniProtKB:P17304’, in which case the ‘source’ attribute would be ‘UniProtKB’).

114 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class Annotation(source=None, type_=None, ref=None, evidence=None, desc=None, confi-
dence=None, property=None, uri=None, valueOf_=None)

The annotation of a molecular sequence. It is recommended to annotate by using the op-
tional ‘ref’ attribute (some examples of acceptable values for the ref attribute: ‘GO:0008270‘,
‘KEGG:Tetrachloroethene degradation’, ‘EC:1.1.1.1’). Optional element ‘desc’ allows for a free
text description. Optional element ‘confidence’ is used to state the type and value of support for
a annotation. Similarly, optional attribute ‘evidence’ is used to describe the evidence for a anno-
tation as free text (e.g. ‘experimental’). Optional element ‘property’ allows for further, typed and
referenced annotations from external resources.

class BinaryCharacters(lost_count=None, absent_count=None, present_count=None,
type_=None, gained_count=None, gained=None, lost=None,
present=None, absent=None, valueOf_=None)

The names and/or counts of binary characters present, gained, and lost at the root of a clade.

class BranchColor(red=None, green=None, blue=None, valueOf_=None)
This indicates the color of a clade when rendered (the color applies to the whole clade unless
overwritten by the color(s) of sub clades).

class Clade(id_source=None, branch_length_attr=None, name=None, branch_length=None,
confidence=None, width=None, color=None, node_id=None, taxonomy=None,
sequence=None, events=None, binary_characters=None, distribution=None,
date=None, reference=None, property=None, clade=None, valueOf_=None)

Element Clade is used in a recursive manner to describe the topology of a phylogenetic tree. The
parent branch length of a clade can be described either with the ‘branch_length’ element or the
‘branch_length’ attribute (it is not recommended to use both at the same time, though). Usage of
the ‘branch_length’ attribute allows for a less verbose description. Element ‘confidence’ is used to
indicate the support for a clade/parent branch. Element ‘events’ is used to describe such events as
gene-duplications at the root node/parent branch of a clade. Element ‘width’ is the branch width
for this clade (including parent branch). Both ‘color’ and ‘width’ elements apply for the whole
clade unless overwritten in-sub clades. Attribute ‘id_source’ is used to link other elements to a
clade (on the xml-level).

class CladeRelation(id_ref_0=None, id_ref_1=None, type_=None, distance=None, confi-
dence=None, valueOf_=None)

This is used to express a typed relationship between two clades. For example it could be used to
describe multiple parents of a clade.

class Confidence(type_=None, valueOf_=None)
A general purpose confidence element. For example this can be used to express the bootstrap
support value of a clade (in which case the ‘type’ attribute is ‘bootstrap’).

class Date(unit=None, desc=None, value=None, minimum=None, maximum=None, val-
ueOf_=None)

A date associated with a clade/node. Its value can be numerical by using the ‘value’ element and/or
free text with the ‘desc’ element’ (e.g. ‘Silurian’). If a numerical value is used, it is recommended
to employ the ‘unit’ attribute to indicate the type of the numerical value (e.g. ‘mya’ for ‘million
years ago’). The elements ‘minimum’ and ‘maximum’ are used the indicate a range/confidence
interval

class Distribution(desc=None, point=None, polygon=None, valueOf_=None)
The geographic distribution of the items of a clade (species, sequences), intended for phylogeo-
graphic applications. The location can be described either by free text in the ‘desc’ element and/or
by the coordinates of one or more ‘Points’ (similar to the ‘Point’ element in Google’s KML for-
mat) or by ‘Polygons’.

4.6. Phyloxml Module 115

Tutorial: Environment for Tree Exploration, Release 2.1 beta

class DomainArchitecture(length=None, domain=None, valueOf_=None)
This is used describe the domain architecture of a protein. Attribute ‘length’ is the total length of
the protein

class Events(type_=None, duplications=None, speciations=None, losses=None, confi-
dence=None, valueOf_=None)

Events at the root node of a clade (e.g. one gene duplication).

class Id(provider=None, valueOf_=None)
A general purpose identifier element. Allows to indicate the provider (or authority) of an identifier.

class MolSeq(is_aligned=None, valueOf_=None)
Element ‘mol_seq’ is used to store molecular sequences. The ‘is_aligned’ attribute is used to
indicated that this molecular sequence is aligned with all other sequences in the same phylogeny
for which ‘is aligned’ is true as well (which, in most cases, means that gaps were introduced, and
that all sequences for which ‘is aligned’ is true must have the same length).

class Phylogeny(rerootable=None, branch_length_unit=None, type_=None, rooted=None,
name=None, id=None, description=None, date=None, confidence=None,
clade=None, clade_relation=None, sequence_relation=None, prop-
erty=None, valueOf_=None)

Element Phylogeny is used to represent a phylogeny. The required attribute ‘rooted’ is used to
indicate whether the phylogeny is rooted or not. The attribute ‘rerootable’ can be used to indicate
that the phylogeny is not allowed to be rooted differently (i.e. because it is associated with root
dependent data, such as gene duplications). The attribute ‘type’ can be used to indicate the type
of phylogeny (i.e. ‘gene tree’). It is recommended to use the attribute ‘branch_length_unit’ if
the phylogeny has branch lengths. Element clade is used in a recursive manner to describe the
topology of a phylogenetic tree.

Phylogeny.subclass
alias of PhyloxmlTree

class Point(geodetic_datum=None, alt_unit=None, lat=None, long=None, alt=None, val-
ueOf_=None)

The coordinates of a point with an optional altitude (used by element ‘Distribution’). Required
attributes are the ‘geodetic_datum’ used to indicate the geodetic datum (also called ‘map datum’,
for example Google’s KML uses ‘WGS84’). Attribute ‘alt_unit’ is the unit for the altitude (e.g.
‘meter’).

class Polygon(point=None, valueOf_=None)
A polygon defined by a list of ‘Points’ (used by element ‘Distribution’).

class Property(datatype=None, id_ref=None, ref=None, applies_to=None, unit=None, val-
ueOf_=None, mixedclass_=None, content_=None)

Property allows for typed and referenced properties from external resources to be attached to ‘Phy-
logeny’, ‘Clade’, and ‘Annotation’. The value of a property is its mixed (free text) content. At-
tribute ‘datatype’ indicates the type of a property and is limited to xsd-datatypes (e.g. ‘xsd:string’,
‘xsd:boolean’, ‘xsd:integer’, ‘xsd:decimal’, ‘xsd:float’, ‘xsd:double’, ‘xsd:date’, ‘xsd:anyURI’).
Attribute ‘applies_to’ indicates the item to which a property applies to (e.g. ‘node’ for the par-
ent node of a clade, ‘parent_branch’ for the parent branch of a clade). Attribute ‘id_ref’ al-
lows to attached a property specifically to one element (on the xml-level). Optional attribute
‘unit’ is used to indicate the unit of the property. An example: <property datatype=”xsd:integer”
ref=”NOAA:depth” applies_to=”clade” unit=”METRIC:m”> 200 </property>

class ProteinDomain(to=None, confidence=None, fromxx=None, id=None, val-
ueOf_=None)

116 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

To represent an individual domain in a domain architecture. The name/unique identifier is de-
scribed via the ‘id’ attribute. ‘confidence’ can be used to store (i.e.) E-values.

class Reference(doi=None, desc=None, valueOf_=None)
A literature reference for a clade. It is recommended to use the ‘doi’ attribute instead of the free
text ‘desc’ element whenever possible.

class Sequence(id_source=None, id_ref=None, type_=None, symbol=None, accession=None,
name=None, location=None, mol_seq=None, uri=None, annotation=None,
domain_architecture=None, valueOf_=None)

Element Sequence is used to represent a molecular sequence (Protein, DNA, RNA) associated
with a node. ‘symbol’ is a short (maximal ten characters) symbol of the sequence (e.g. ‘ACTM’)
whereas ‘name’ is used for the full name (e.g. ‘muscle Actin’). ‘location’ is used for the location
of a sequence on a genome/chromosome. The actual sequence can be stored with the ‘mol_seq’
element. Attribute ‘type’ is used to indicate the type of sequence (‘dna’, ‘rna’, or ‘protein’). One
intended use for ‘id_ref’ is to link a sequence to a taxonomy (via the taxonomy’s ‘id_source’) in
case of multiple sequences and taxonomies per node.

class SequenceRelation(id_ref_0=None, id_ref_1=None, type_=None, distance=None,
confidence=None, valueOf_=None)

This is used to express a typed relationship between two sequences. For example it could be used
to describe an orthology (in which case attribute ‘type’ is ‘orthology’).

class Taxonomy(id_source=None, id=None, code=None, scientific_name=None, author-
ity=None, common_name=None, synonym=None, rank=None, uri=None,
valueOf_=None)

Element Taxonomy is used to describe taxonomic information for a clade. Element ‘code’ is
intended to store UniProt/Swiss-Prot style organism codes (e.g. ‘APLCA’ for the California sea
hare ‘Aplysia californica’) or other styles of mnemonics (e.g. ‘Aca’). Element ‘authority’ is
used to keep the authority, such as ‘J. G. Cooper, 1863’, associated with the ‘scientific_name’.
Element ‘id’ is used for a unique identifier of a taxon (for example ‘6500’ with ‘ncbi_taxonomy’
as ‘provider’ for the California sea hare). Attribute ‘id_source’ is used to link other elements to a
taxonomy (on the xml-level).

class Uri(type_=None, desc=None, valueOf_=None)
A uniform resource identifier. In general, this is expected to be an URL (for example, to link to
an image on a website, in which case the ‘type’ attribute might be ‘image’ and ‘desc’ might be
‘image of a California sea hare’).

class PhyloxmlTree(phyloxml_clade=None, phyloxml_phylogeny=None, **kargs)
PhyloTree object supporting phyloXML format.

4.7 PhylomeDB3 Connector

class PhylomeDB3Connector(host=‘84.88.66.245’, db=’phylomedb_3’, user=’public’,
passwd=’public’, port=3306)

Returns a connector to a phylomeDB3 database.

db: database name in the host server. host: hostname in which phylomeDB is hosted.
user: username to the database. port: port used to connect database. passwd: password
to connect database.

An object whose methods can be used to query the database.

4.7. PhylomeDB3 Connector 117

Tutorial: Environment for Tree Exploration, Release 2.1 beta

count_algs(phylome_id)
Returns how many alignments are for a given phylome

count_trees(phylome_id)
Retuns the frequency of each evolutionary method in the input phylome

get_algs(id, phylome_id, raw_alg=True, clean_alg=True)
Return the either the clean, the raw or both alignments for the input phylomeDB ID in the
input phylome

get_all_isoforms(id)
Returns all the isoforms registered for the input phylomeDB ID

get_available_trees_by_phylome(id, collateral=True)
Returns information about which methods have been used to reconstruct every tree for a
given phylomeDB ID grouped by phylome

get_best_tree(id, phylome_id)
return a tree for input id in the given phylome for the best fitting evolutionary model in terms
of LK

get_clean_alg(id, phylome_id)
Return the raw alignment for the input phylomeDB ID in the given phylome

get_collateral_seeds(protid)
Return the trees where the protid is presented as part of the homolog sequences to the seed
protein

get_external_ids(ids)
Returns all the external IDs registered in the ‘external_id’ table that are associated to the
input phylomeDB IDs

get_genome_ids(taxid, version, filter_isoforms=True)
Returns the phylomeDB IDs for a given genome in the database filtering out, or not, the
different isoforms for each ID

get_genome_info(genome)
Returns all available information about a registered genome/proteome

get_genomes()
Returns all current available genomes/proteomes

get_genomes_by_species(taxid)
Return all the proteomes/genomes registered for the input taxaid code

get_go_ids(ids)
Returns all available GO Terms associated to the input phylomeDB IDs

get_id_by_external(external)
Returns the protein id associated to a given external id

get_id_translations(id)
Returns all the registered translations of a given phylomeDB ID

get_info_homologous_seqs(protid, phylome_id, tree=None, tree_method=False,
sequence=False)

Return all the available information for a given set of homologous sequences extracted from
a tree from a given phylome.

118 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

get_longest_isoform(id)
Returns the longest isoform for a given phylomeDB ID

get_new_phylomedb_id(old_id)
Return the conversion between an old phylomeDB ID and a new one

get_old_phylomedb_ids(ids)
Returns all old phylomeDB IDs associated to each of the input phylomeDB IDs

get_phylome_algs(phylome_id)
Returns all alignments available for a given phylome

get_phylome_info(phylome_id)
Returns available information on a given phylome

get_phylome_seed_ids(phylome_id, filter_isoforms=True)
Returns the seed phylomeDB IDs for a given phylome being possible to filter out the longest
isoforms

get_phylome_seed_ids_info(phylome_id, start=0, offset=None, fil-
ter_isoforms=False)

get_phylome_trees(phylome_id)
Returns all trees available for a given phylome

get_phylomes()
Returns all current available phylomes

get_phylomes_for_seed_ids(ids)
Given a list of phylomeDB IDs, return in which phylomes these IDs have been used as a
seed

get_prot_gene_names(ids)
Returns all possible protein and gene names associated to the input phylomeDB IDs

get_proteomes_in_phylome(phylome_id)
Returns a list of proteomes associated to a given phylome_id

get_raw_alg(id, phylome_id)
Return the raw alignment for the input phylomeDB ID in the given phylome

get_seq_info_in_tree(id, phylome_id, method=None)
Return all the available information for each sequence from tree/s asociated to a tuple (pro-
tein, phylome) identifiers.

get_seq_info_msf(id, phylome_id)
Return all available information for the homologous sequences to the input phylomeDB ID
in the input phylome using the best tree to compute the set of homologous sequences

get_seqid_info(id)
Returns available information about a given protid

get_seqs_in_genome(taxid, version, filter_isoforms=True)
Returns all sequences of a given proteome, filtering the

get_species()
Returns all current registered species in the database

get_species_in_phylome(phylome_id)
Returns a list of proteomes associated to a given phylome_id

4.7. PhylomeDB3 Connector 119

Tutorial: Environment for Tree Exploration, Release 2.1 beta

get_species_info(taxid=None, code=None)
Returns all information on a given species/code

get_tree(id, phylome_id, method=None, best_tree=False)
Depending in the input parameters select either .- a tree with the best evolutionary model in
terms of LK (best_tree) .- a tree reconstructed using a specific model (method) .- all available
model/trees for the tuple (phylomeDB ID, phylome ID)

search_id(id)
Returns a list of the longest isoforms for each proteome where the ID is already registered.
The ID can be a current phylomeDB ID version, former phylomeDB ID or an external ID.

4.8 Seqgroup class

class SeqGroup(sequences=None, format=’fasta’)
Bases: object

SeqGroup class can be used to store a set of sequences (aligned or not).

Parameters

• sequences – Path to the file containing the sequences or, alternatively, the text
string containing the same information.

• format (fasta) – the format in which sequences are encoded. Current sup-
ported formats are: fasta, phylip (phylip sequencial) and iphylip
(phylip interleaved). Phylip format forces sequence names to a maximum
of 10 chars. To avoid this effect, you can use the relaxed phylip format:
phylip_relaxed and iphylip_relaxed.

msf = ">seq1\nAAAAAAAAAAA\n>seq2\nTTTTTTTTTTTTT\n"
seqs = SeqGroup(msf, format="fasta")
print seqs.get_seq("seq1")

get_entries()
Returns the list of entries currently stored.

get_seq(name)
Returns the sequence associated to a given entry name.

iter_entries()
Returns an iterator over all sequences in the collection. Each item is a tuple with the sequence
name, sequence, and sequence comments

set_seq(name, seq, comments=None)
Updates or adds a sequence

write(format=’fasta’, outfile=None)
Returns the text representation of the sequences in the supplied given format (de-
fault=FASTA). If “oufile” argument is used, the result is written into the given path.

New in version 2.1.

120 Chapter 4. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 2.1 beta

4.9 WebTreeApplication object

class WebTreeApplication
Provides a basic WSGI application object which can handle ETE tree visualization and in-
teractions. Please, see the webplugin example provided with the ETE installation package
(http://pypi.python.org/pypi/ete2).

register_action(name, target, handler, checker, html_generator)
Adds a new web interactive function associated to tree nodes.

set_default_layout_fn(layout_fn)
Fix the layout function used to render the tree.

set_external_app_handler(handler)
Sets a custom function that will extend current WSGI application.

set_external_tree_renderer(handler)
If the tree needs to be processed every time is going to be drawn, the task can be delegated.

set_tree_loader(TreeConstructor)
Delegate tree constructor. It allows to customize the Tree class used to create new tree
instances.

set_tree_size(w, h, units=’px’)
Fix the size of tree image

set_tree_style(handler)
Fix a TreeStyle instance to render tree images.

4.9. WebTreeApplication object 121

http://pypi.python.org/pypi/ete2

Tutorial: Environment for Tree Exploration, Release 2.1 beta

122 Chapter 4. ETE’s Reference Guide

CHAPTER 5

Frequently Asked Questions (FAQs)

5.1 GENERAL

5.1.1 How do I use ETE?

From 2.1 version, ETE includes a basic standalone program that can be used to quickly visualize your
trees. Type ete2 in a terminal to access the program. For instance:

ete2 "((A,B),C);"

or

ete2 mytreefile.nw

However, ETE is not a standalone program. The ete2 script is a very simple implementation and does
not allow for fancy customization. The main goal of ETE is to provide a Python programming library,
so you can create your own scripts to manipulate and visualize phylogenetic trees. Many examples are
available here and along with the ETE tutorial.

5.1.2 Can ETE draw circular trees?

Yes, starting from version 2.1, ete can render trees in circular mode. Install the latest version from
http://pypi.python.org/pypi/ete2 or by executing easy_install -U ete2.

5.1.3 How do I find a leaf by its name?

You can use the TreeNode.search_nodes() function:

matching_nodes = tree.search_nodes(name="Tip1")

Or use the following shortcut (not that it assumes no duplicated names)

node = tree&"Tip1"

123

http:://ete.cgenomics.org/releases/ete2/examples-ete2.tar.gz
http://pypi.python.org/pypi/ete2

Tutorial: Environment for Tree Exploration, Release 2.1 beta

5.1.4 How do I visit all nodes within a tree?

There are many ways, but this is the easiest one:

for node in t.traverse():
print node.name

5.1.5 Can I control the order in which nodes are visited?

Yes, currently 3 strategies are implemented: pre-order, post-order and level-over. You can check the
differences at http://packages.python.org/ete2/tutorial/tutorial_trees.html#traversing-browsing-trees

5.1.6 How do I visit all leaves within a tree?

for node in t.iter_leaves():
print node.name

5.1.7 What’s the difference between get_leaves() and iter_leaves()?

All get_ methods (get_leaves, get_descendants, etc.) return an independent list of items. This means
that tree traversing is fully performed before returning the result. In contrast, iter_ methods return one
item at a time, saving memory and, increasing the performance of some operations.

Note also that tree topology cannot be modified while iterating methods are being executed. This limi-
tation does not apply for get_ methods.

In addition, get_ methods can be used to cache tree browsing paths (the order in which nodes must be
visited), so the same tree traversing operations don’t need to be repeated:

nodes_in_preorder = tree.get_descendants("preorder")
for n in nodes_in_preorder:

pass # Do something
#
(...)
#
for n in nodes_in_preorder:

pass # Do something else

5.1.8 How do I export tree node annotations using the Newick format?

You will need to use the extended newick format. To do so, you only need to specify the name of the
node attributes that must be exported when calling tree.write() function. For instance:

tree.write(features=["name", "dist"])

If you want all node features to be exported in the newick string, use “features=[]”:

tree.write(features=[])

124 Chapter 5. Frequently Asked Questions (FAQs)

http://packages.python.org/ete2/tutorial/tutorial_trees.html#traversing-browsing-trees

Tutorial: Environment for Tree Exploration, Release 2.1 beta

5.1.9 How do I export tree images as SVG

Image format is automatically detected from the filename extension. The following code will automati-
cally render the tree as a vector image.

tree.render("mytree.svg")

5.1. GENERAL 125

Tutorial: Environment for Tree Exploration, Release 2.1 beta

126 Chapter 5. Frequently Asked Questions (FAQs)

CHAPTER 6

Help and Support

Could not find an answer? Join the ETE toolkit community and post your question!!

You will also be updated with important news and announcements.

https://groups.google.com/forum/#!forum/etetoolkit

(etetoolkit@googlegroups.com)

127

https://groups.google.com/forum/#!forum/etetoolkit
mailto:etetoolkit@googlegroups.com

Tutorial: Environment for Tree Exploration, Release 2.1 beta

128 Chapter 6. Help and Support

CHAPTER 7

About ETE

ETE is currently developed by the Comparative genomics group at the Centre for Genomic Regulation

You can cite ETE as:

Jaime Huerta-Cepas, Joaquín Dopazo and Toni Gabaldón. ETE: a python Environment for Tree
Exploration. BMC Bioinformatics 2010, 11:24.

7.1 People using ETE

Warning: UNDER CONSTRUCTION

genindex

modindex

129

http://gabaldonlab.crg.es/
http://www.crg.es/

Tutorial: Environment for Tree Exploration, Release 2.1 beta

130 Chapter 7. About ETE

Python Module Index

e
ete2, 11
ete2.clustering, 64
ete2.nexml, 99
ete2.parser.seqgroup, 120
ete2.phylo, 95
ete2.phyloxml, 114
ete2.treeview, 88
ete2.webplugin, 78

131

Tutorial: Environment for Tree Exploration, Release 2.1 beta

132 Python Module Index

Index

A
add_child() (TreeNode method), 81
add_face() (FaceContainer method), 90
add_face() (TreeNode method), 82
add_face_to_node() (in module ete2), 91
add_feature() (TreeNode method), 82
add_features() (TreeNode method), 82
add_sister() (TreeNode method), 82
AttrFace (class in ete2), 92

B
build_from_file() (Nexml method), 99

C
children (TreeNode attribute), 82
CircleFace (class in ete2), 93
ClusterNode (class in ete2), 98
ClusterTree (in module ete2), 99
convert_to_ultrametric() (TreeNode method), 82
copy() (TreeNode method), 82
count_algs() (PhylomeDB3Connector method),

117
count_trees() (PhylomeDB3Connector method),

118

D
del_feature() (TreeNode method), 82
delete() (TreeNode method), 82
describe() (TreeNode method), 83
detach() (TreeNode method), 83
dist (TreeNode attribute), 83
DynamicItemFace (class in ete2), 94

E
ete2 (module), 11
ete2.clustering (module), 64, 98
ete2.nexml (module), 99

ete2.parser.seqgroup (module), 120
ete2.phylo (module), 95
ete2.phyloxml (module), 114
ete2.treeview (module), 88
ete2.webplugin (module), 78, 120
EvolEvent (class in ete2.phylo), 97

F
Face (class in ete2), 91
FaceContainer (class in ete2), 90

G
get_age() (PhyloNode method), 96
get_age_balanced_outgroup() (PhyloNode

method), 96
get_algs() (PhylomeDB3Connector method), 118
get_all_isoforms() (PhylomeDB3Connector

method), 118
get_ascii() (TreeNode method), 83
get_available_trees_by_phylome() (Phy-

lomeDB3Connector method), 118
get_best_tree() (PhylomeDB3Connector method),

118
get_children() (TreeNode method), 83
get_clean_alg() (PhylomeDB3Connector method),

118
get_collateral_seeds() (PhylomeDB3Connector

method), 118
get_common_ancestor() (TreeNode method), 83
get_common_ancestor_OLD() (TreeNode

method), 83
get_descendant_evol_events() (PhyloNode

method), 96
get_descendants() (TreeNode method), 83
get_distance() (TreeNode method), 84
get_dunn() (ClusterNode method), 98
get_entries() (SeqGroup method), 120

133

Tutorial: Environment for Tree Exploration, Release 2.1 beta

get_external_ids() (PhylomeDB3Connector
method), 118

get_farthest_leaf() (TreeNode method), 84
get_farthest_node() (TreeNode method), 84
get_farthest_oldest_leaf() (PhyloNode method),

96
get_farthest_oldest_node() (PhyloNode method),

97
get_genome_ids() (PhylomeDB3Connector

method), 118
get_genome_info() (PhylomeDB3Connector

method), 118
get_genomes() (PhylomeDB3Connector method),

118
get_genomes_by_species() (Phy-

lomeDB3Connector method), 118
get_go_ids() (PhylomeDB3Connector method),

118
get_id_by_external() (PhylomeDB3Connector

method), 118
get_id_translations() (PhylomeDB3Connector

method), 118
get_info_homologous_seqs() (Phy-

lomeDB3Connector method), 118
get_leaf_names() (TreeNode method), 84
get_leaf_profiles() (ClusterNode method), 98
get_leaves() (TreeNode method), 84
get_leaves_by_name() (TreeNode method), 84
get_longest_isoform() (PhylomeDB3Connector

method), 118
get_midpoint_outgroup() (TreeNode method), 84
get_my_evol_events() (PhyloNode method), 97
get_new_phylomedb_id() (Phy-

lomeDB3Connector method), 119
get_old_phylomedb_ids() (Phy-

lomeDB3Connector method), 119
get_partitions() (TreeNode method), 84
get_phylome_algs() (PhylomeDB3Connector

method), 119
get_phylome_info() (PhylomeDB3Connector

method), 119
get_phylome_seed_ids() (PhylomeDB3Connector

method), 119
get_phylome_seed_ids_info() (Phy-

lomeDB3Connector method), 119
get_phylome_trees() (PhylomeDB3Connector

method), 119
get_phylomes() (PhylomeDB3Connector method),

119
get_phylomes_for_seed_ids() (Phy-

lomeDB3Connector method), 119

get_prot_gene_names() (PhylomeDB3Connector
method), 119

get_proteomes_in_phylome() (Phy-
lomeDB3Connector method), 119

get_raw_alg() (PhylomeDB3Connector method),
119

get_seq() (SeqGroup method), 120
get_seq_info_in_tree() (PhylomeDB3Connector

method), 119
get_seq_info_msf() (PhylomeDB3Connector

method), 119
get_seqid_info() (PhylomeDB3Connector

method), 119
get_seqs_in_genome() (PhylomeDB3Connector

method), 119
get_silhouette() (ClusterNode method), 98
get_sisters() (TreeNode method), 85
get_species() (PhylomeDB3Connector method),

119
get_species() (PhyloNode method), 97
get_species_in_phylome() (Phy-

lomeDB3Connector method), 119
get_species_info() (PhylomeDB3Connector

method), 119
get_tree() (PhylomeDB3Connector method), 120
get_tree_root() (TreeNode method), 85

I
ImgFace (class in ete2), 93
is_leaf() (TreeNode method), 85
is_monophyletic() (PhyloNode method), 97
is_root() (TreeNode method), 85
iter_descendants() (TreeNode method), 85
iter_entries() (SeqGroup method), 120
iter_leaf_names() (TreeNode method), 85
iter_leaf_profiles() (ClusterNode method), 98
iter_leaves() (TreeNode method), 85
iter_search_nodes() (TreeNode method), 85
iter_species() (PhyloNode method), 97

L
ladderize() (TreeNode method), 85
link_to_alignment() (PhyloNode method), 97
link_to_arraytable() (ClusterNode method), 98

N
Nexml (class in ete2), 99
NexmlTree (class in ete2), 99
NodeStyle (class in ete2), 90

P
PhylomeDB3Connector (class in ete2), 117

134 Index

Tutorial: Environment for Tree Exploration, Release 2.1 beta

PhyloNode (class in ete2), 96
PhyloTree (in module ete2), 97
Phyloxml (class in ete2), 114
PhyloxmlTree (class in ete2), 114
populate() (TreeNode method), 86
ProfileFace (class in ete2), 93
prune() (TreeNode method), 86

R
reconcile() (PhyloNode method), 97
register_action() (WebTreeApplication method),

121
remove_child() (TreeNode method), 86
remove_sister() (TreeNode method), 86
render() (TreeNode method), 86

S
search_id() (PhylomeDB3Connector method), 120
search_nodes() (TreeNode method), 87
SeqGroup (class in ete2), 120
SequenceFace (class in ete2), 93
set_default_layout_fn() (WebTreeApplication

method), 121
set_distance_function() (ClusterNode method), 99
set_external_app_handler() (WebTreeApplication

method), 121
set_external_tree_renderer() (WebTreeApplication

method), 121
set_outgroup() (TreeNode method), 87
set_seq() (SeqGroup method), 120
set_species_naming_function() (PhyloNode

method), 97
set_style() (TreeNode method), 87
set_tree_loader() (WebTreeApplication method),

121
set_tree_size() (WebTreeApplication method), 121
set_tree_style() (WebTreeApplication method),

121
show() (TreeNode method), 87
sort_descendants() (TreeNode method), 87
species (PhyloNode attribute), 97
StaticItemFace (class in ete2), 94
support (TreeNode attribute), 87
SVG_COLORS (in module ete2), 94
swap_children() (TreeNode method), 87

T
TextFace (class in ete2), 92
traverse() (TreeNode method), 87
Tree (in module ete2), 88
TreeFace (class in ete2), 94
TreeNode (class in ete2), 81

TreeStyle (class in ete2), 88

U
unroot() (TreeNode method), 88
up (TreeNode attribute), 88

W
WebTreeApplication (class in ete2), 121
write() (SeqGroup method), 120
write() (TreeNode method), 88

Index 135

	Download and Install
	GNU/Linux
	MacOS
	Older Versions

	Changelog history
	What's new in ETE 2.1

	The ETE tutorial
	Working With Tree Data Structures
	The Programmable Tree Drawing Engine
	Phylogenetic Trees
	Clustering Trees
	The PhylomeDB API
	Phylogenetic XML standards
	Overview

	ETE's Reference Guide
	Master Tree class
	Treeview module
	PhyloTree class
	Clustering module
	Nexml module
	Phyloxml Module
	PhylomeDB3 Connector
	Seqgroup class
	WebTreeApplication object

	Frequently Asked Questions (FAQs)
	GENERAL

	Help and Support
	About ETE
	People using ETE

	Python Module Index
	Index

